+0  
 
+1
1302
4
avatar+5 

Suppose h(x)=3-((x+4)/(x-7))

 

Evaluate h^-1(9)

Evaluate [h(9)]^-1

Evaluate h(9^-1)

 Sep 30, 2015

Best Answer 

 #4
avatar+130516 
+5

Here's the last one:

 

Evaluate h(9^-1)

 

9-1 =  1/9

 

So h(1/9)  =  3 - ( 1/9 + 4) / (1/9 - 7)  =   3  - (37/9) / (-62/9)   =  3 + (37/62)  =   223/62

 

 

 

cool cool cool

 Sep 30, 2015
 #1
avatar+12530 
+5

Hallo

laugh

 Sep 30, 2015
 #2
avatar+130516 
+5

Here's the first one :

 

Let us find the inverse for h(x)

 

h(x) = y = [ 3(x - 7) - (x + 4)] / (x - 7)  =   (2x - 25) / (x - 7)

 

y = (2x - 25) / (x - 7)

 

y(x - 7) = 2x - 25

 

yx - 7y  = 2x - 25

 

yx - 2x  = 7y - 25

 

x(y - 2)  = 7y - 25

 

x = ( 7y - 25 ) / (y - 2)   switch x and y

 

y = (7x - 25) / ( (x - 2)  = h-1(x)

 

So  h-1(9)  = (7(9) - 25) / ( 9 - 2)  = (63 - 25)/ (9 - 2)  = 38/7

 

 

cool cool cool

 Sep 30, 2015
 #3
avatar+130516 
+5

Here's the second one:

 

Evaluate [h(9)]-1

 

h(9)  = 3 - (9 + 4)/(9 - 7)  =   3 - 5/2   =  1/2

 

So .... [h(9)]-1  =   (1/2)-1  = 2

 

 

 

cool cool cool

 Sep 30, 2015
 #4
avatar+130516 
+5
Best Answer

Here's the last one:

 

Evaluate h(9^-1)

 

9-1 =  1/9

 

So h(1/9)  =  3 - ( 1/9 + 4) / (1/9 - 7)  =   3  - (37/9) / (-62/9)   =  3 + (37/62)  =   223/62

 

 

 

cool cool cool

CPhill Sep 30, 2015

2 Online Users