Suppose h(x)=3-((x+4)/(x-7))
Evaluate h^-1(9)
Evaluate [h(9)]^-1
Evaluate h(9^-1)
Here's the first one :
Let us find the inverse for h(x)
h(x) = y = [ 3(x - 7) - (x + 4)] / (x - 7) = (2x - 25) / (x - 7)
y = (2x - 25) / (x - 7)
y(x - 7) = 2x - 25
yx - 7y = 2x - 25
yx - 2x = 7y - 25
x(y - 2) = 7y - 25
x = ( 7y - 25 ) / (y - 2) switch x and y
y = (7x - 25) / ( (x - 2) = h-1(x)
So h-1(9) = (7(9) - 25) / ( 9 - 2) = (63 - 25)/ (9 - 2) = 38/7