We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
48
1
avatar

Suppose that g(x)=f^{-1}(x). If g(-15)=0, g(0)=3, g(3)=9 and g(9)=20, what is f(f(9))?

 Nov 7, 2019
 #1
avatar+105411 
+1

Suppose that g(x)  =  f^{-1}(x). If g(-15)=0, g(0)=3, g(3)=9 and g(9)=20, what is f(f(9))?

 

f(x)  must be the inverse  of  f-1(x)

 

And   g(x)  = f-1(x)    

 

So...the points  ( -15,0)   (0, 3) and   ( 3,9)    are on  g(x)  and  f-1(x)

 

Which means  that the points  ( 0, -15)    (3, 0 )  and  ( 9,3)   are  on f(x)

 

So

 

f(9)  = 3

 

And

 

f ( f (9))   =  f(3)   =   0

 

 

cool cool cool

 Nov 7, 2019

8 Online Users

avatar
avatar