+0  
 
0
98
1
avatar+474 

Suppose that the point \(\left(\rho,\theta,\phi \right)=\left( 12, \frac{2 \pi}{3}, \frac{3 \pi}{4} \right)\) in spherical coordinates can be expressed as \((x, y, z)\) in rectangular coordinates. Find \((x+z)\).

 Dec 4, 2018
 #1
avatar+94545 
+2

I'm digging deep here, Rekt...!!!....LOL!!!!

 

First....let's convert these to cylindrical coordinates  (r, θ, z)

r = p sin Φ   =   12 sin 3pi/4  =  6√2

θ = θ = 2pi/3

z = p cos Φ =  12 cos 3pi/ 4 =    -6√2

 

Then....convert these to rectangular (Cartesian) coordinates (x, y, z)

x = r cos  θ =  6√2 * cos 2pi/ 3 =  6√2 (-1/2) = -3√2

y = r sin θ =   6√2 * sin 2pi/ 3 =  6√2 * √3/2 =  3√6

z =   -6√2

 

So   (x, y , z)  =   ( -3√2 ,  3√6,  -6√2 )

 

So.... x + z =  -9√2

 

 

cool cool cool

 Dec 4, 2018
edited by CPhill  Dec 4, 2018

12 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.