Processing math: 100%
 
+0  
 
0
1627
1
avatar

Suppose you use this formula to model the sunrise, where t is the time after midnight and m is the number of months after January 1st. What happens on September 1st? (Hint: September is the ninth month. Substitute the appropriate value for m and solve for t(m)).

t(m) = 1.665 sin π/6 (m+3) + 5.485

Answer choices:

A. The sun rises at the zero hour (midnight)

B. The sun rises at about 5:29 am

C. The sun rises at about 3:00 am

D. The sun rises at about 5:45 am

 Dec 14, 2015

Best Answer 

 #1
avatar+26396 
+15

Suppose you use this formula to model the sunrise, where t is the time after midnight and m is the number of months after January 1st. What happens on September 1st? (Hint: September is the ninth month. Substitute the appropriate value for m and solve for t(m)). 

t(m) = 1.665 sin π/6 (m+3) + 5.485

 

I assume:
t(m)=1.665sin(π(m+3)6)+5.485m=9t(9)=1.665sin(π(9+3)6)+5.485t(9)=1.665sin(π(12)6)+5.485t(9)=1.665sin(2π)+5.485sin(2π)=0t(9)=1.6650+5.485t(9)=5.485t(9)=5:[(5.4855)60] amt(9)=5:[29.1] am

 

 

B. The sun rises at about 5:29 am

 

laugh

 Dec 14, 2015
 #1
avatar+26396 
+15
Best Answer

Suppose you use this formula to model the sunrise, where t is the time after midnight and m is the number of months after January 1st. What happens on September 1st? (Hint: September is the ninth month. Substitute the appropriate value for m and solve for t(m)). 

t(m) = 1.665 sin π/6 (m+3) + 5.485

 

I assume:
t(m)=1.665sin(π(m+3)6)+5.485m=9t(9)=1.665sin(π(9+3)6)+5.485t(9)=1.665sin(π(12)6)+5.485t(9)=1.665sin(2π)+5.485sin(2π)=0t(9)=1.6650+5.485t(9)=5.485t(9)=5:[(5.4855)60] amt(9)=5:[29.1] am

 

 

B. The sun rises at about 5:29 am

 

laugh

heureka Dec 14, 2015

1 Online Users