+0  
 
0
649
1
avatar

Suppose you use this formula to model the sunrise, where t is the time after midnight and m is the number of months after January 1st. What happens on September 1st? (Hint: September is the ninth month. Substitute the appropriate value for m and solve for t(m)).

t(m) = 1.665 sin π/6 (m+3) + 5.485

Answer choices:

A. The sun rises at the zero hour (midnight)

B. The sun rises at about 5:29 am

C. The sun rises at about 3:00 am

D. The sun rises at about 5:45 am

Guest Dec 14, 2015

Best Answer 

 #1
avatar+20038 
+15

Suppose you use this formula to model the sunrise, where t is the time after midnight and m is the number of months after January 1st. What happens on September 1st? (Hint: September is the ninth month. Substitute the appropriate value for m and solve for t(m)). 

t(m) = 1.665 sin π/6 (m+3) + 5.485

 

I assume:
\(\begin{array}{lrcll} & t(m) &=& 1.665 \cdot \sin{ \left( \frac{\pi\cdot (m+3)}{6} \right) }+ 5.485 \\\\ m = 9 & t(9) &=& 1.665 \cdot \sin{ \left( \frac{\pi\cdot (9+3)}{6} \right) }+ 5.485 \\ & t(9) &=& 1.665 \cdot \sin{ \left( \frac{\pi\cdot (12)}{6} \right) }+ 5.485 \\ & t(9) &=& 1.665 \cdot \sin{ ( 2 \pi ) }+ 5.485 \qquad \sin{ ( 2 \pi )} = 0\\ & t(9) &=& 1.665 \cdot 0 + 5.485 \\ & t(9) &=& 5.485 \\\\ & t(9) &=& 5:[(5.485-5)\cdot 60]\ \mathrm{am} \\ & t(9) &=& 5:[29.1]\ \mathrm{am} \end{array}\)

 

 

B. The sun rises at about 5:29 am

 

laugh

heureka  Dec 14, 2015
 #1
avatar+20038 
+15
Best Answer

Suppose you use this formula to model the sunrise, where t is the time after midnight and m is the number of months after January 1st. What happens on September 1st? (Hint: September is the ninth month. Substitute the appropriate value for m and solve for t(m)). 

t(m) = 1.665 sin π/6 (m+3) + 5.485

 

I assume:
\(\begin{array}{lrcll} & t(m) &=& 1.665 \cdot \sin{ \left( \frac{\pi\cdot (m+3)}{6} \right) }+ 5.485 \\\\ m = 9 & t(9) &=& 1.665 \cdot \sin{ \left( \frac{\pi\cdot (9+3)}{6} \right) }+ 5.485 \\ & t(9) &=& 1.665 \cdot \sin{ \left( \frac{\pi\cdot (12)}{6} \right) }+ 5.485 \\ & t(9) &=& 1.665 \cdot \sin{ ( 2 \pi ) }+ 5.485 \qquad \sin{ ( 2 \pi )} = 0\\ & t(9) &=& 1.665 \cdot 0 + 5.485 \\ & t(9) &=& 5.485 \\\\ & t(9) &=& 5:[(5.485-5)\cdot 60]\ \mathrm{am} \\ & t(9) &=& 5:[29.1]\ \mathrm{am} \end{array}\)

 

 

B. The sun rises at about 5:29 am

 

laugh

heureka  Dec 14, 2015

32 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.