+0  
 
0
52
1
avatar

Assuming x, y and z are real positive numbers satisfying:

\(\begin{align*} xy-z&=15, \\ xz-y&=0, \text{ and} \\ yz-x&=0, \end{align*}\)

 

then, what is the value of xyz?

 
Guest Jul 11, 2018
 #1
avatar+19636 
+2

Assuming x, y and z are real positive numbers satisfying:

\(\begin{align*} xy-z&=15, \\ xz-y&=0, \text{ and} \\ yz-x&=0, \end{align*}\)
\begin{align*} xy-z&=15, \\ xz-y&=0, \text{ and} \\ yz-x&=0, \end{align*}
then, what is the value of xyz?

 

\(\begin{array}{|lrcll|} \hline & xy-z&=& 15 \\ (1) & \mathbf{xy} &\mathbf{=}& \mathbf{15 + z} \\\\ & xz-y&=& 0 \\ (2) & \mathbf{xz} & \mathbf{=}& \mathbf{y} \\\\ & yz-x&=0 \\ (3) & \mathbf{yz} & \mathbf{=}& \mathbf{x} \\\\ \hline (2)+(3): & xz + yz &=& y + x \\ & z(x+y) &=& x+y \\ & z &=& \dfrac{x+y}{x+y} \\ & \mathbf{z} & \mathbf{=}& \mathbf{1} \\\\ \hline & xy & = & 15 + z \quad & | \quad z = 1 \\ & xy & = & 15 + 1 \\ & \mathbf{xy} &\mathbf{=}& \mathbf{16} \\\\ & xyz & = & xy\cdot z \quad & | \quad xy = 16 \qquad z = 1 \\ & xyz & = & 16\cdot 1 \\ & \mathbf{xyz} &\mathbf{=}& \mathbf{16} \\ \hline \end{array}\)

 

laugh

 
heureka  Jul 11, 2018

4 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.