We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
198
1
avatar

Assuming x, y and z are real positive numbers satisfying:

\(\begin{align*} xy-z&=15, \\ xz-y&=0, \text{ and} \\ yz-x&=0, \end{align*}\)

 

then, what is the value of xyz?

 Jul 11, 2018
 #1
avatar+22343 
+2

Assuming x, y and z are real positive numbers satisfying:

\(\begin{align*} xy-z&=15, \\ xz-y&=0, \text{ and} \\ yz-x&=0, \end{align*}\)
\begin{align*} xy-z&=15, \\ xz-y&=0, \text{ and} \\ yz-x&=0, \end{align*}
then, what is the value of xyz?

 

\(\begin{array}{|lrcll|} \hline & xy-z&=& 15 \\ (1) & \mathbf{xy} &\mathbf{=}& \mathbf{15 + z} \\\\ & xz-y&=& 0 \\ (2) & \mathbf{xz} & \mathbf{=}& \mathbf{y} \\\\ & yz-x&=0 \\ (3) & \mathbf{yz} & \mathbf{=}& \mathbf{x} \\\\ \hline (2)+(3): & xz + yz &=& y + x \\ & z(x+y) &=& x+y \\ & z &=& \dfrac{x+y}{x+y} \\ & \mathbf{z} & \mathbf{=}& \mathbf{1} \\\\ \hline & xy & = & 15 + z \quad & | \quad z = 1 \\ & xy & = & 15 + 1 \\ & \mathbf{xy} &\mathbf{=}& \mathbf{16} \\\\ & xyz & = & xy\cdot z \quad & | \quad xy = 16 \qquad z = 1 \\ & xyz & = & 16\cdot 1 \\ & \mathbf{xyz} &\mathbf{=}& \mathbf{16} \\ \hline \end{array}\)

 

laugh

 Jul 11, 2018

11 Online Users

avatar
avatar