a and b are real numbers and satisfy a*b^2 = 27/5 and a^2*b = 1080. Compute a + 5b.
solving it this way is easier, i reckon.
$ \begin{cases} ab^2 = \frac{27}{5} \\ a^2b = 1080 \end{cases} $
lets work this -- $ ab^2=\frac{27}{5} $ ; take the $b^2$ to the other side and you get
$ a=\frac{27}{5b^2} $
plugging that in the other equation you get \( (\frac{27}{5b^2})^2\times b=1080 \)
that is equal to $ \frac{729}{25b^3} \times b=1080 $
$ 729=27000b^3 $
$ b^3=\frac{27}{1000}$
$ b=\sqrt[3]{\frac{27}{1000}} $
$ b=\frac{3}{10} $
back to our a equaltion: $ ab^2 = \frac{27}{5} \ \ \ \Rightarrow \ \ \ \ a (\frac{3}{10})^2 = \frac{27}{5} $
$a\frac{9}{100}=\frac{27}{5}$
$ \cancel{100}a\frac{9}{\cancel{100}}=\frac{27\times100}{5} $
$ 9a=540 $
$ a=60 $
now to our last condition $a+5b \ \ \ \Rightarrow \ \ \ 60+ 5(\frac{3}{10}) $
$ 60+ \frac{5\times 3}{10} $
$ 60+ \frac{3}{2} $
$ \frac{60\times 2+3}{2} $
$ \frac{123}{2} $
:D