+0  
 
0
954
2
avatar+280 

I just need help pluggin in the values. I never did ones with values outside of the sqr.

 Apr 24, 2017
 #1
avatar+9481 
+3

This is just the plugging in part...

\(g(x) = 5-\sqrt{4-x}\)

 

To find g(3 + h), replace every instance of x with (3 + h) .

\(g(3+h) = 5-\sqrt{4-(3+h)} \\g(3+h) =5-\sqrt{4-3-h} \\g(3+h) = 5-\sqrt{1-h}\)

 

 

To find g(3), replace every insance of x with 3.

\(g(3) = 5-\sqrt{4-3} \\g(3) =5-\sqrt{1} \\ g(3) =4\)

 

 

So

\(m_{tan}=\lim_{h\rightarrow 0} \frac{g(3+h)-g(3)}{h} =\lim_{h\rightarrow 0} \frac{(5-\sqrt{1-h})-(4)}{h} \\~\\=\lim_{h\rightarrow 0} \frac{1-\sqrt{1-h}}{h}\)

 

Then you gotta actually evaluate the limit and all that to get the slope of the line when x = 3

 Apr 24, 2017
 #2
avatar+280 
+1

okay thanks alot guy.

 Apr 25, 2017

1 Online Users

avatar