What is the digit in the tens place when 11^(2005) is expressed in decimal notation?
11^2005 =........... 9135081051 - These are the last 10 digits
OR:
11^1 =11
11^2 =121
11^3 =1331
11^4 =14,641
11^5 =161,051
11^6 =1,771,561
11^7 =19,487,171
11^8 =214,358,881
22^9 =2,357,947,691
Notice the pattern in ones digit = 1 and the tens digit = the last digit of the exponent = 5