+0  
 
0
950
3
avatar+471 

Compute: 7Chose6

 Oct 19, 2017

Best Answer 

 #2
avatar+2446 
+2

\({x \choose y}=\frac{x!}{y!(x-y)!}\)

 

Knowing this formula will allow you to compute any input for the choose function. Now, let's compute the result.

 

\({7 \choose 6}=\frac{7!}{6!*(7-6)!}\) Let's simplify the denominator first.
\(\frac{7!}{6!*(7-6)!}=\frac{7!}{6!}\) In order to simplify this, let's think about it this way...
\(\frac{7!}{6!}=\frac{7*6*5*...*1}{\hspace{3mm}6*5*...*1}\) There is a lot that will cancel here.
\(7\)  
   
   
   
   
   
   
   
   
   
   
   
 Oct 19, 2017
 #1
avatar
+1

7nCr6 =7

 Oct 19, 2017
 #2
avatar+2446 
+2
Best Answer

\({x \choose y}=\frac{x!}{y!(x-y)!}\)

 

Knowing this formula will allow you to compute any input for the choose function. Now, let's compute the result.

 

\({7 \choose 6}=\frac{7!}{6!*(7-6)!}\) Let's simplify the denominator first.
\(\frac{7!}{6!*(7-6)!}=\frac{7!}{6!}\) In order to simplify this, let's think about it this way...
\(\frac{7!}{6!}=\frac{7*6*5*...*1}{\hspace{3mm}6*5*...*1}\) There is a lot that will cancel here.
\(7\)  
   
   
   
   
   
   
   
   
   
   
   
TheXSquaredFactor Oct 19, 2017
 #3
avatar+26394 
+1

Compute: 7Chose6

 

\(\begin{array}{|rcll|} \hline && \mathbf{\binom{7}{6}} \\\\ &=& \binom{7}{7-6} \\\\ &=& \binom{7}{1} \\\\ &=& \dfrac{7}{1} \\\\ &\mathbf{=}&\mathbf{ 7 } \\ \hline \end{array}\)

 

laugh

 Oct 20, 2017

2 Online Users