+0  
 
0
296
3
avatar+438 

Compute: 7Chose6

Mr.Owl  Oct 19, 2017

Best Answer 

 #2
avatar+2190 
+2

\({x \choose y}=\frac{x!}{y!(x-y)!}\)

 

Knowing this formula will allow you to compute any input for the choose function. Now, let's compute the result.

 

\({7 \choose 6}=\frac{7!}{6!*(7-6)!}\) Let's simplify the denominator first.
\(\frac{7!}{6!*(7-6)!}=\frac{7!}{6!}\) In order to simplify this, let's think about it this way...
\(\frac{7!}{6!}=\frac{7*6*5*...*1}{\hspace{3mm}6*5*...*1}\) There is a lot that will cancel here.
\(7\)  
   
   
   
   
   
   
   
   
   
   
   
TheXSquaredFactor  Oct 19, 2017
 #1
avatar
+1

7nCr6 =7

Guest Oct 19, 2017
 #2
avatar+2190 
+2
Best Answer

\({x \choose y}=\frac{x!}{y!(x-y)!}\)

 

Knowing this formula will allow you to compute any input for the choose function. Now, let's compute the result.

 

\({7 \choose 6}=\frac{7!}{6!*(7-6)!}\) Let's simplify the denominator first.
\(\frac{7!}{6!*(7-6)!}=\frac{7!}{6!}\) In order to simplify this, let's think about it this way...
\(\frac{7!}{6!}=\frac{7*6*5*...*1}{\hspace{3mm}6*5*...*1}\) There is a lot that will cancel here.
\(7\)  
   
   
   
   
   
   
   
   
   
   
   
TheXSquaredFactor  Oct 19, 2017
 #3
avatar+20008 
+1

Compute: 7Chose6

 

\(\begin{array}{|rcll|} \hline && \mathbf{\binom{7}{6}} \\\\ &=& \binom{7}{7-6} \\\\ &=& \binom{7}{1} \\\\ &=& \dfrac{7}{1} \\\\ &\mathbf{=}&\mathbf{ 7 } \\ \hline \end{array}\)

 

laugh

heureka  Oct 20, 2017

15 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.