We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
44
2
avatar+858 

Let a and b be nonzero complex numbers such that a^2 + ab + b^2 = 0. Evaluate (a^9 + b^9)/(a + b)^9.

 Mar 27, 2019
 #1
avatar+4775 
+1

\(a^2 + ab + b^2 = 0\\ (a+b)^2 = a^2+2ab+b^2= ab\\ a = \dfrac{-b\pm \sqrt{-3b^2}}{2} = b e^{\pm i 2\pi/3}\\ a^9+b^9 = b^9(e^{\pm i 6\pi}+1) = 2b^9\\ (a+b)^9 =( (a+b)^2)^{9/2} = \\ (ab)^{9/2} =\left( b^2 e^{\pm i 2\pi/3}\right)^{9/2} = b^9e^{\pm i 3\pi} = -b^9\\ \dfrac{a^9+b^9}{(a+b)^9} = \dfrac{2b^9}{-b^9} = -2\)

.
 Mar 27, 2019
 #2
avatar+4077 
0

That's what I get too, is it right, ant101?

tertre  Mar 28, 2019
edited by tertre  Mar 28, 2019

10 Online Users