The positive five-digit integers that use each of the digits 1, 2, 3, 4 and 5 exactly once are ordered from least to greatest. What is the 50th integer in the list?
Not sure if this is what you wanted:
12345 , 12354 , 12435 , 12453 , 12534 , 12543 , 13245 , 13254 , 13425 , 13452 , 13524 , 13542 , 14235 , 14253 , 14325 , 14352 , 14523 , 14532 , 15234 , 15243 , 15324 , 15342 , 15423 , 15432 , 21345 , 21354 , 21435 , 21453 , 21534 , 21543 , 23145 , 23154 , 23415 , 23451 , 23514 , 23541 , 24135 , 24153 , 24315 , 24351 , 24513 , 24531 , 25134 , 25143 , 25314 , 25341 , 25413 , 25431 , 31245 , 31254 [This is the 50th integer in the list]
The positive five-digit integers that use each of the digits 1, 2, 3, 4 and 5 exactly once are ordered from least to greatest. What is the 50th integer in the list?
Yes there is a quicker way.
How many begin with 1? that would be 4!=24
The next 24 would begin with 2
So the first 48 begin with either 1or 2
The 49th one will be 31245
and he 50th one will be 31254