We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
97
2
avatar

Consider the line through points A = (1, 1, 2) and B = (2, 3, 4), and let P be the foot of the perpendicular from Q = (3, -7, -1) to this line, as in the picture below:

Then \(\overrightarrow{AP} \) is the projection of \(\overrightarrow{AQ} \)onto a vector

 

\(\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \)

 

such that \(u_1 + u_2 + u_3 = 5. \)What is u?

 

Find the distance between Q = (3, -7, -1) and the line through A = (1, 1, 2) and B = (2, 3, 4). This distance is equal to \(\dfrac{\sqrt{d}}{3} \) for some integer d. What is d?

 Aug 15, 2019
 #1
avatar+23295 
+2

Consider the line through points A = (1, 1, 2) and B = (2, 3, 4),
and let P be the foot of the perpendicular from Q = (3, -7, -1) to this line,
as in the picture below:

 

Then \(\vec{AP}\) is the projection of \(\vec{AQ}\) onto a vector
\(\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}\)
such that \(u_1 + u_2 + u_3 = 5\).


What is u?

 

\(\begin{array}{|rcll|} \hline \vec{u} &=& \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \\ &=& \vec{B} - \vec{A} \\ &=& \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \\ &=& \begin{pmatrix} 2-1 \\ 3-1 \\ 4-2 \end{pmatrix} \\ &=& \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \\\\ && u_1 + u_2 + u_3 \\ &=& 1+2+2 \\ &=& 5 \\ \hline \end{array}\)

 

laugh

 Aug 16, 2019
 #2
avatar+23295 
+2

Find the distance between Q = (3, -7, -1) and the line through A = (1, 1, 2) and B = (2, 3, 4).
This distance is equal to \(\dfrac{\sqrt{d}}{3}\) for some integer d.
What is d?

 

line through A = (1, 1, 2) and B = (2, 3, 4):

\(\small{ \begin{array}{|rclrcl|} \hline \vec{x} &=& \vec{A}+t(\vec{B}-\vec{A}) & \vec{r} &=& \vec{B}-\vec{A} \quad | \quad \vec{A} = (1, 1, 2)\quad \vec{B} = (2, 3, 4)\\ &&& \vec{r} &=& \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}-\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \\ &&&\vec{r} &=& \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \\ \mathbf{\vec{x}} &=& \mathbf{\vec{A}+t\vec{r}} \\ \hline (\vec{x}-\vec{Q})\cdot \vec{r} &=& 0 \quad | \quad \vec{PQ} \text{ is } \perp \text{ to } \vec{r} \\ (\mathbf{\vec{A}+t\vec{r}}-\vec{Q})\cdot \vec{r} &=& 0 \\ (\vec{A}-\vec{Q} + t\vec{r})\cdot \vec{r} &=& 0 & \vec{A}-\vec{Q}&=& \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}-\begin{pmatrix} 3 \\ -7 \\ -1 \end{pmatrix} \quad | \quad \vec{Q} = (3, -7, -1)\\ & & & \vec{A}-\vec{Q}&=& \begin{pmatrix} -2 \\ 8 \\ 3 \end{pmatrix} \\\\ \left[\begin{pmatrix} -2 \\ 8 \\ 3 \end{pmatrix} + t\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \right]\cdot\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} &=& 0 \\\\ \left[\begin{pmatrix} -2+ t \\ 8+2t \\ 3+2t \end{pmatrix} \right]\cdot\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} &=& 0 \\\\ (-2+ t)\cdot 1 + (8+2t)\cdot 2+ (3+2t)\cdot 2 &=& 0 \\ -2+t+16+4t+6+4t &=& 0 \\ 9t+20 &=& 0 \\ \mathbf{t} &=& \mathbf{ -\dfrac{20}{9} } \\ \hline \end{array} }\)

 

\(\begin{array}{|rcll|} \hline \mathbf{\vec{P}} &=& \vec{A}+t\vec{r} \\ &=& \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}-\mathbf{ \dfrac{20}{9} }\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \\\\ &=& \begin{pmatrix} 1-\dfrac{20}{9} \\ 1-\dfrac{40}{9} \\ 2-\dfrac{20}{9} \end{pmatrix} \\\\ &=& \begin{pmatrix} \mathbf{ -\dfrac{11}{9}} \\ \mathbf{-\dfrac{31}{9}} \\ \mathbf{ -\dfrac{22}{9}} \end{pmatrix} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \mathbf{\vec{PQ}} &=& \vec{Q}- \vec{P} \\ &=& \begin{pmatrix} 3 \\ -7 \\ -1 \end{pmatrix}- \begin{pmatrix} \mathbf{ -\dfrac{11}{9}} \\ \mathbf{-\dfrac{31}{9}} \\ \mathbf{ -\dfrac{22}{9}} \end{pmatrix} \\\\ &=& \begin{pmatrix} 3 \\ -7 \\ -1 \end{pmatrix}+ \begin{pmatrix} \dfrac{11}{9} \\ \dfrac{31}{9} \\ \dfrac{22}{9} \end{pmatrix} \\\\ &=& \begin{pmatrix} 3 +\dfrac{11}{9} \\ -7+\dfrac{31}{9} \\ -1+\dfrac{22}{9} \end{pmatrix} \\\\ &=& \begin{pmatrix} \mathbf{ \dfrac{38}{9}} \\ \mathbf{-\dfrac{32}{9}} \\ \mathbf{ \dfrac{13}{9}} \end{pmatrix} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline |\vec{PQ}| &=& \sqrt{ \mathbf{ \left( \dfrac{38}{9} \right)^2} +\mathbf{\left(-\dfrac{32}{9}\right)^2 } +\mathbf{\left( \dfrac{13}{9}\right)^2 } } \\ &=& \sqrt{ \dfrac{38^2}{9^2} + \dfrac{32^2}{9^2} + \dfrac{13^2}{9^2} } \\\\ &=& \sqrt{ \dfrac{1}{9}\left( \dfrac{38^2}{9} + \dfrac{32^2}{9} + \dfrac{13^2}{9} \right) } \\\\ &=& \dfrac{1}{3}\sqrt{ \dfrac{38^2}{9} + \dfrac{32^2}{9} + \dfrac{13^2}{9} } \\\\ &=& \dfrac{1}{3}\sqrt{ \dfrac{1}{9}\left( 38^2+32^2+13^2 \right) } \\\\ &=& \dfrac{1}{3}\sqrt{ \dfrac{2637}{9} } \\\\ &=& \dfrac{1}{3}\sqrt{293} \\\\ &=& \mathbf{ \dfrac{\sqrt{293}}{3} } \quad | \quad \dfrac{\sqrt{d}}{3} \\ \\ \mathbf{d} &=& \mathbf{293}\\ \hline \end{array}\)

 

laugh

 Aug 16, 2019
edited by heureka  Aug 16, 2019

17 Online Users

avatar
avatar