+0  
 
0
2680
1
avatar

The altitude of a triangle is 2 cm shorter that its base. The area is 15 cm squared. Find the base of the triangle.

 Oct 21, 2014

Best Answer 

 #1
avatar+130511 
+5

Let b = the base   ....then the height = b-2 ....so....

15 = (1/2(b)(b-2)   multiply both sides by 2

30 = b^2 - 2b         rearranging, we have

b^2 - 2b - 30 = 0   using the on-site solver, we have....

$${{\mathtt{b}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{b}}{\mathtt{\,-\,}}{\mathtt{30}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{b}} = {\mathtt{1}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{31}}}}\\
{\mathtt{b}} = {\sqrt{{\mathtt{31}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{b}} = -{\mathtt{4.567\: \!764\: \!362\: \!830\: \!021\: \!9}}\\
{\mathtt{b}} = {\mathtt{6.567\: \!764\: \!362\: \!830\: \!021\: \!9}}\\
\end{array} \right\}$$

So the base is (√31 + 1)cm    [and the height = (√31 - 1)cm]

 

 Oct 21, 2014
 #1
avatar+130511 
+5
Best Answer

Let b = the base   ....then the height = b-2 ....so....

15 = (1/2(b)(b-2)   multiply both sides by 2

30 = b^2 - 2b         rearranging, we have

b^2 - 2b - 30 = 0   using the on-site solver, we have....

$${{\mathtt{b}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{b}}{\mathtt{\,-\,}}{\mathtt{30}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{b}} = {\mathtt{1}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{31}}}}\\
{\mathtt{b}} = {\sqrt{{\mathtt{31}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{b}} = -{\mathtt{4.567\: \!764\: \!362\: \!830\: \!021\: \!9}}\\
{\mathtt{b}} = {\mathtt{6.567\: \!764\: \!362\: \!830\: \!021\: \!9}}\\
\end{array} \right\}$$

So the base is (√31 + 1)cm    [and the height = (√31 - 1)cm]

 

CPhill Oct 21, 2014

1 Online Users