+0  
 
+5
1108
1
avatar+961 

What is the product of (1+3i) and (3+2i)?

 Aug 27, 2015

Best Answer 

 #1
avatar+78 
+15

$$\left({\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}{i}\right){\mathtt{\,\times\,}}\left({\mathtt{3}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2}}{i}\right) = {\mathtt{3}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2}}{i}{\mathtt{\,\small\textbf+\,}}{\mathtt{9}}{i}{\mathtt{\,\small\textbf+\,}}{\mathtt{6}}\left[{{i}}^{{\mathtt{2}}}\right] = {\mathtt{3}}{\mathtt{\,\small\textbf+\,}}{\mathtt{11}}{i}{\mathtt{\,-\,}}{\mathtt{6}} = {\mathtt{\,-\,}}{\mathtt{3}}{\mathtt{\,\small\textbf+\,}}{\mathtt{11}}{i}$$

.
 Aug 27, 2015
 #1
avatar+78 
+15
Best Answer

$$\left({\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}{i}\right){\mathtt{\,\times\,}}\left({\mathtt{3}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2}}{i}\right) = {\mathtt{3}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2}}{i}{\mathtt{\,\small\textbf+\,}}{\mathtt{9}}{i}{\mathtt{\,\small\textbf+\,}}{\mathtt{6}}\left[{{i}}^{{\mathtt{2}}}\right] = {\mathtt{3}}{\mathtt{\,\small\textbf+\,}}{\mathtt{11}}{i}{\mathtt{\,-\,}}{\mathtt{6}} = {\mathtt{\,-\,}}{\mathtt{3}}{\mathtt{\,\small\textbf+\,}}{\mathtt{11}}{i}$$

EthanPendence Aug 27, 2015

0 Online Users