+0  
 
0
816
2
avatar+589 

The center of a circle is located at (−2, 7) . The radius of the circle is 2.

 

What is the equation of the circle in general form?

x2+y2−4x+14y+49=0

x2+y2+4x−14y+51=0

x2+y2+4x−14y+49=0

x2+y2−4x+14y+51=0

jbouyer  May 15, 2017
 #1
avatar+92413 
+2

We have the form

 

( x - h)^2  + ( y - k)^2  = r^2      where  (h, k) is the center and r is the radius  ....so.....

 

(x + 2)^2  + (y - 7)^2   = 4           expand

 

x^2 + 4x + 4 + y^2 - 14y + 49  = 4       subtract 4 from both sides

 

x^2 + y^2 + 4x - 14y + 49 = 0

 

 

cool cool cool

CPhill  May 15, 2017
 #2
avatar+20549 
+1

The center of a circle is located at (−2, 7) . The radius of the circle is 2.

What is the equation of the circle in general form?

 

A circle can be defined as the locus of all points that satisfy the equation
\((x-h)^2 + (y-k)^2 = r^2 \)  ( Standard Form )
where r is the radius of the circle,
and h,k are the coordinates of its center.

 

The general Form is:
\(x^2+y^2 +ax+by+c = 0\)

 

Standard Form to general Form:

\(\begin{array}{|rcll|} \hline (x-h)^2 + (y-k)^2 &=& r^2 \\ x^2-2xh+h^2+y^2-2yk+k^2 &=& r^2 \\ x^2+y^2+x\cdot\underbrace{(-2h)}_{=a}+y\cdot\underbrace{(-2k)}_{=b}+\underbrace{h^2+k^2-r^2}_{=c} &=& 0 \\ \hline \end{array} \)

 

a,b and c ?

\(\begin{array}{|rcll|} \hline x^2+y^2+x\cdot\underbrace{(-2h)}_{=a}+y\cdot\underbrace{(-2k)}_{=b}+\underbrace{h^2+k^2-r^2}_{=c} &=& 0 \\\\ \color{red}a &\color{red}=& \color{red}-2h \\\\ \color{red}b &\color{red}=& \color{red}-2k \\\\ \color{red}c &\color{red}=&\color{red}h^2+k^2-r^2\\ \hline \end{array} \)

 

If we have h,k and r, we can calculate a,b and c:

\(\begin{array}{|lcll|} \hline \mathbf{x^2+y^2 +ax+by+c = 0} \\ a = -2h \\ b = -2k \\ c =h^2+k^2-r^2 \\ \hline \end{array}\)

 

\(h=-2\\ k=7\\ r=2\)

\(\begin{array}{|lcll|} \hline a = -2h \\ a = -2\cdot(-2)\\ \mathbf{a = 4} \\\\ b = -2k \\ b = -2(7) \\ \mathbf{a = -14} \\\\ c =h^2+k^2-r^2 \\ c =(-2)^2+7^2-2^2 \\ c =4+49-4 \\ \mathbf{c =49} \\\\ x^2+y^2 +ax+by+c = 0 \\ \mathbf{x^2+y^2 +4x-14y+49 =0} \\ \hline \end{array} \)

 

The equation of the circle in general form is: \(x^2+y^2 +4x-14y+49 =0\)

 

laugh

heureka  May 16, 2017

33 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.