+0  
 
0
485
3
avatar

 

The data in the table can be modeled using the function y = A tan(Bx).

Inputoutputinputoutput
-8- infinity11.8
-7-44.223.6
-6-21.235.9
-5-13.248.8
-4-8.8513.2
-3-5.9621.2
-2-3.6744.2
-1-1.88infinity
00  

 

1. State the value of A.

   a. 11.3

   b. 7

   c. 4.7

   d. 3.1

 

2. State the location of asymptotes.

   a. 16k, k € Z

   b. 8 + 4k, k € Z

   c. 8k, k € Z

   d. 8 + 16k, k € Z

 

3. Use the model to evaluate the function at x = 10.

   a. -6.6

   b  -15.9

   c.  -21.2

   d.  -9.9

 Sep 6, 2017
edited by Guest  Sep 6, 2017
 #1
avatar
0

Please share the answer on this. Thanks!

 Sep 9, 2017
 #2
avatar+99117 
+2

The data in the table can be modeled using the function y = A tan(Bx).

I am going to assume that this question is in degrees.

 

Two of the asymptotes lie at    \(x=\pm \frac{90}{B}\)

 

The asymptotes here lie at  x= 8  and  x= -8

 

So

 8=90/B

B=90/8 = 11.25

 

I think the first question actually meant for you to find B not A.

---------------------

Now one asymptote is at x=-8 then x=8  so the next one will be at x=8+16=24

So

the asymptotes occur at x=8+16K     where k is an integer.

--------------------

3. Use the model to evaluate the function at x = 10.

f(10)=f(-6)=-21.2

--------------------

 

Here is the graph, maybe it will help you though it was not necessary for answering those questions.

 

https://www.desmos.com/calculator/b80tz7lqup

 Sep 9, 2017
 #3
avatar
0

Thank you so much!

Guest Sep 10, 2017

6 Online Users