+0

# The data in the table can be modeled using the function y = A tan(Bx).

0
485
3

The data in the table can be modeled using the function y = A tan(Bx).

 Input output input output -8 - infinity 1 1.8 -7 -44.2 2 3.6 -6 -21.2 3 5.9 -5 -13.2 4 8.8 -4 -8.8 5 13.2 -3 -5.9 6 21.2 -2 -3.6 7 44.2 -1 -1.8 8 infinity 0 0

1. State the value of A.

a. 11.3

b. 7

c. 4.7

d. 3.1

2. State the location of asymptotes.

a. 16k, k € Z

b. 8 + 4k, k € Z

c. 8k, k € Z

d. 8 + 16k, k € Z

3. Use the model to evaluate the function at x = 10.

a. -6.6

b  -15.9

c.  -21.2

d.  -9.9

Sep 6, 2017
edited by Guest  Sep 6, 2017

#1
0

Please share the answer on this. Thanks!

Sep 9, 2017
#2
+2

The data in the table can be modeled using the function y = A tan(Bx).

I am going to assume that this question is in degrees.

Two of the asymptotes lie at    $$x=\pm \frac{90}{B}$$

The asymptotes here lie at  x= 8  and  x= -8

So

8=90/B

B=90/8 = 11.25

I think the first question actually meant for you to find B not A.

---------------------

Now one asymptote is at x=-8 then x=8  so the next one will be at x=8+16=24

So

the asymptotes occur at x=8+16K     where k is an integer.

--------------------

3. Use the model to evaluate the function at x = 10.

f(10)=f(-6)=-21.2

--------------------

Here is the graph, maybe it will help you though it was not necessary for answering those questions.

https://www.desmos.com/calculator/b80tz7lqup

Sep 9, 2017