+0  
 
0
38
3
avatar

 

The data in the table can be modeled using the function y = A tan(Bx).

Inputoutputinputoutput
-8- infinity11.8
-7-44.223.6
-6-21.235.9
-5-13.248.8
-4-8.8513.2
-3-5.9621.2
-2-3.6744.2
-1-1.88infinity
00  

 

1. State the value of A.

   a. 11.3

   b. 7

   c. 4.7

   d. 3.1

 

2. State the location of asymptotes.

   a. 16k, k € Z

   b. 8 + 4k, k € Z

   c. 8k, k € Z

   d. 8 + 16k, k € Z

 

3. Use the model to evaluate the function at x = 10.

   a. -6.6

   b  -15.9

   c.  -21.2

   d.  -9.9

Guest Sep 6, 2017
edited by Guest  Sep 6, 2017
Sort: 

3+0 Answers

 #1
avatar
0

Please share the answer on this. Thanks!

Guest Sep 9, 2017
 #2
avatar+90169 
+2

The data in the table can be modeled using the function y = A tan(Bx).

I am going to assume that this question is in degrees.

 

Two of the asymptotes lie at    \(x=\pm \frac{90}{B}\)

 

The asymptotes here lie at  x= 8  and  x= -8

 

So

 8=90/B

B=90/8 = 11.25

 

I think the first question actually meant for you to find B not A.

---------------------

Now one asymptote is at x=-8 then x=8  so the next one will be at x=8+16=24

So

the asymptotes occur at x=8+16K     where k is an integer.

--------------------

3. Use the model to evaluate the function at x = 10.

f(10)=f(-6)=-21.2

--------------------

 

Here is the graph, maybe it will help you though it was not necessary for answering those questions.

 

https://www.desmos.com/calculator/b80tz7lqup

Melody  Sep 9, 2017
 #3
avatar
0

Thank you so much!

Guest Sep 10, 2017

6 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details