In order to find the range,
Let \(y=r(x)\)
\(y={x^2 \over 1-x^2}\)
⇒ \({1\over y}={1\over x^2}-1\)
⇒ \({1\over x^2}={1+y\over y}\)
⇒ \(x^2={y\over 1+y}\) ...(1)
Eq (1) has solutions if and only if,
\({y\over 1+y} ≥0\)
i.e. if either \(y≥0\) and \(y+1>0 \)
or \(y≤0\) and \(y+1<0\)
Thus range of r(x) is \( ( − ∞ , − 1 ) ∪ [ 0 , ∞ )\).
~Thank You!