+0  
 
0
568
5
avatar

The equation of the hyperbola that has a center at (1,2) , a focus at (-4 , 2) , and a vertex at (-3 , 2 ) , is ((x-C)^2)/(A^2)-((y-D)^2)/(B^2)=1

where A =____

B =_____

C =______

D =______

Guest Jun 16, 2015

Best Answer 

 #1
avatar+20025 
+10

The equation of the hyperbola that has a center at (1,2) , a focus at (-4 , 2) , and a vertex at (-3 , 2 ) , is ((x-C)^2)/(A^2)-((y-D)^2)/(B^2)=1

 

$$\dfrac{(x-C)^2}{A^2}-\dfrac{(y-D)^2}{B^2}=1$$

 

center at (1,2):   

 $$\small{\text{$
\begin{array}{rcl}
x-C &=& 0 \\ 1-C &=& 0 \\ C &=& 1 \\\\
y-D &=& 0 \\ 2-D &=& 0 \\ D &=& 2
\end{array}
$}}$$

 

vertex at (-3 , 2 ):

$$\small{\text{$
\begin{array}{l}
(-3 , 2 ) - (1,2)_{\mathrm{center}} = (-4,0) =(\pm A ,0)\\
A = \pm 4
\end{array}
$}}$$

 

focus at (-4 , 2):

$$\small{\text{$
\begin{array}{l}
(-4 , 2 ) - (1,2)_{\mathrm{center}} = (-5,0) =(\pm \sqrt{A^2+B^2} ,0)\end{array}
$}}\\
\begin{array}{rcl}
A^2+B^2 &=& (-5)^2 = 25\\
(\pm 4)^2+B^2 &=& 25\\
B^2 &=& 25-16 = 9\\
B &=& \pm 3
\end{array}
$}}$$

 

A = $$\small{\text{$\pm 4$}}$$

B = $$\small{\text{$\pm 3$}}$$

C = 1

D = 2

$$\dfrac{(x-1)^2}{(\pm 4)^2}-\dfrac{(y-2)^2}{(\pm 3)^2}=1$$

 

heureka  Jun 16, 2015
 #1
avatar+20025 
+10
Best Answer

The equation of the hyperbola that has a center at (1,2) , a focus at (-4 , 2) , and a vertex at (-3 , 2 ) , is ((x-C)^2)/(A^2)-((y-D)^2)/(B^2)=1

 

$$\dfrac{(x-C)^2}{A^2}-\dfrac{(y-D)^2}{B^2}=1$$

 

center at (1,2):   

 $$\small{\text{$
\begin{array}{rcl}
x-C &=& 0 \\ 1-C &=& 0 \\ C &=& 1 \\\\
y-D &=& 0 \\ 2-D &=& 0 \\ D &=& 2
\end{array}
$}}$$

 

vertex at (-3 , 2 ):

$$\small{\text{$
\begin{array}{l}
(-3 , 2 ) - (1,2)_{\mathrm{center}} = (-4,0) =(\pm A ,0)\\
A = \pm 4
\end{array}
$}}$$

 

focus at (-4 , 2):

$$\small{\text{$
\begin{array}{l}
(-4 , 2 ) - (1,2)_{\mathrm{center}} = (-5,0) =(\pm \sqrt{A^2+B^2} ,0)\end{array}
$}}\\
\begin{array}{rcl}
A^2+B^2 &=& (-5)^2 = 25\\
(\pm 4)^2+B^2 &=& 25\\
B^2 &=& 25-16 = 9\\
B &=& \pm 3
\end{array}
$}}$$

 

A = $$\small{\text{$\pm 4$}}$$

B = $$\small{\text{$\pm 3$}}$$

C = 1

D = 2

$$\dfrac{(x-1)^2}{(\pm 4)^2}-\dfrac{(y-2)^2}{(\pm 3)^2}=1$$

 

heureka  Jun 16, 2015
 #2
avatar+93664 
+5

Melody  Jun 16, 2015
 #3
avatar+93664 
+5

$$\dfrac{(x-C)^2}{A^2}-\dfrac{(y-D)^2}{B^2}=1$$

 

The equation of the hyperbola that has a center at (1,2) ,

 

$$\dfrac{(x-1)^2}{A^2}-\dfrac{(y-2)^2}{B^2}=1$$                  and            $$C^2=A^2+B^2$$

 

a focus at (-4 , 2) ,   and a vertex at (-3 , 2 )

 

The foci are at   $$(h\pm C,k)$$      so    1-C=-4    C=5

The vertices are at     $$(h\pm A, k)$$      1-A=-3     A=4

$$\\4^2+B^2=5^2\\
B=3$$

 

$$\\\dfrac{(x-1)^2}{4^2}-\dfrac{(y-2)^2}{3^2}=1\\\\\\
\dfrac{(x-1)^2}{16}-\dfrac{(y-2)^2}{9}=1$$

Melody  Jun 16, 2015
 #4
avatar+90001 
0

Very nice, heureka and Melody.......

 

 

CPhill  Jun 16, 2015
 #5
avatar+93664 
0

Thanks Chris  

Melody  Jun 16, 2015

9 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.