Processing math: 100%
 
+0  
 
0
1592
5
avatar

The equation of the hyperbola that has a center at (1,2) , a focus at (-4 , 2) , and a vertex at (-3 , 2 ) , is ((x-C)^2)/(A^2)-((y-D)^2)/(B^2)=1

where A =____

B =_____

C =______

D =______

 Jun 16, 2015

Best Answer 

 #1
avatar+26396 
+10

The equation of the hyperbola that has a center at (1,2) , a focus at (-4 , 2) , and a vertex at (-3 , 2 ) , is ((x-C)^2)/(A^2)-((y-D)^2)/(B^2)=1

 

(xC)2A2(yD)2B2=1

 

center at (1,2):   

 xC=01C=0C=1yD=02D=0D=2

 

vertex at (-3 , 2 ):

(3,2)(1,2)center=(4,0)=(±A,0)A=±4

 

focus at (-4 , 2):

\small{\text{$ \begin{array}{l}  (-4 , 2 ) - (1,2)_{\mathrm{center}} = (-5,0) =(\pm \sqrt{A^2+B^2} ,0)\end{array} $}}\\  \begin{array}{rcl}  A^2+B^2 &=& (-5)^2 = 25\\  (\pm 4)^2+B^2 &=& 25\\  B^2 &=& 25-16 = 9\\ B &=& \pm 3  \end{array}  $}}

 

A = ±4

B = ±3

C = 1

D = 2

(x1)2(±4)2(y2)2(±3)2=1

 

 Jun 16, 2015
 #1
avatar+26396 
+10
Best Answer

The equation of the hyperbola that has a center at (1,2) , a focus at (-4 , 2) , and a vertex at (-3 , 2 ) , is ((x-C)^2)/(A^2)-((y-D)^2)/(B^2)=1

 

(xC)2A2(yD)2B2=1

 

center at (1,2):   

 xC=01C=0C=1yD=02D=0D=2

 

vertex at (-3 , 2 ):

(3,2)(1,2)center=(4,0)=(±A,0)A=±4

 

focus at (-4 , 2):

\small{\text{$ \begin{array}{l}  (-4 , 2 ) - (1,2)_{\mathrm{center}} = (-5,0) =(\pm \sqrt{A^2+B^2} ,0)\end{array} $}}\\  \begin{array}{rcl}  A^2+B^2 &=& (-5)^2 = 25\\  (\pm 4)^2+B^2 &=& 25\\  B^2 &=& 25-16 = 9\\ B &=& \pm 3  \end{array}  $}}

 

A = ±4

B = ±3

C = 1

D = 2

(x1)2(±4)2(y2)2(±3)2=1

 

heureka Jun 16, 2015
 #2
avatar+118696 
+5

Melody Jun 16, 2015
 #3
avatar+118696 
+5

(xC)2A2(yD)2B2=1

 

The equation of the hyperbola that has a center at (1,2) ,

 

(x1)2A2(y2)2B2=1                  and            C2=A2+B2

 

a focus at (-4 , 2) ,   and a vertex at (-3 , 2 )

 

The foci are at   (h±C,k)      so    1-C=-4    C=5

The vertices are at     (h±A,k)      1-A=-3     A=4

42+B2=52B=3

 

(x1)242(y2)232=1(x1)216(y2)29=1

.
 Jun 16, 2015
 #4
avatar+130466 
0

Very nice, heureka and Melody.......

 

 

 Jun 16, 2015
 #5
avatar+118696 
0

Thanks Chris  

 Jun 16, 2015

1 Online Users