the expression cot times sec is equivalent to what
Weierstrass substitution:
$$\\\small{\text{
$
\boxed{
\rm{if~}t = \tan\tfrac{x}{2} \rm{~then~}
}$}}\\
\small{\text{
$
\boxed{
\sin x = \frac{2t}{1 + t^2},~
\cos x = \frac{1 - t^2}{1 + t^2},~
\tan x = \frac{2t}{1 - t^2},~
\cot x = \frac{1 - t^2}{2t},~
\sec x = \frac{1 + t^2}{1 - t^2},~
\csc x = \frac{1 + t^2}{2t}.
}$}}$$
$$\cot{(x)} \cdot \sec {(x)} =
\left( \frac{1 - t^2}{2t} \right)
\cdot
\left( \frac{1 + t^2}{1 - t^2} \right)
= \frac{1 + t^2}{2t} = \csc{( x )}$$
cotx = cos x / sin x and sec x = 1/cos x
So
cot x * sec x = (cos x / sin x) * (1 / cos x) = 1 / sin x = csc x
cot(x) = cos(x) / sin(x)
sec(x) = 1 / cos(x)
cot(x) · sec(x) = [ cos(x) / sin(x) ] · [ 1 / cos(x) ] = 1/ sin(x) = csc(x)
the expression cot times sec is equivalent to what
Weierstrass substitution:
$$\\\small{\text{
$
\boxed{
\rm{if~}t = \tan\tfrac{x}{2} \rm{~then~}
}$}}\\
\small{\text{
$
\boxed{
\sin x = \frac{2t}{1 + t^2},~
\cos x = \frac{1 - t^2}{1 + t^2},~
\tan x = \frac{2t}{1 - t^2},~
\cot x = \frac{1 - t^2}{2t},~
\sec x = \frac{1 + t^2}{1 - t^2},~
\csc x = \frac{1 + t^2}{2t}.
}$}}$$
$$\cot{(x)} \cdot \sec {(x)} =
\left( \frac{1 - t^2}{2t} \right)
\cdot
\left( \frac{1 + t^2}{1 - t^2} \right)
= \frac{1 + t^2}{2t} = \csc{( x )}$$