+0  
 
0
1690
3
avatar

the expression cot times sec is equivalent to what

 May 27, 2015

Best Answer 

 #3
avatar+26400 
+10

the expression cot times sec is equivalent to what

Weierstrass substitution:

$$\\\small{\text{
$
\boxed{
\rm{if~}t = \tan\tfrac{x}{2} \rm{~then~}
}$}}\\
\small{\text{
$
\boxed{
\sin x = \frac{2t}{1 + t^2},~
\cos x = \frac{1 - t^2}{1 + t^2},~
\tan x = \frac{2t}{1 - t^2},~
\cot x = \frac{1 - t^2}{2t},~
\sec x = \frac{1 + t^2}{1 - t^2},~
\csc x = \frac{1 + t^2}{2t}.
}$}}$$

 

$$\cot{(x)} \cdot \sec {(x)} =
\left( \frac{1 - t^2}{2t} \right)
\cdot
\left( \frac{1 + t^2}{1 - t^2} \right)
= \frac{1 + t^2}{2t} = \csc{( x )}$$

 May 27, 2015
 #1
avatar+130516 
+5

cotx = cos x / sin x    and     sec x  =  1/cos x

 

So

 

cot x * sec x =   (cos x / sin x) * (1 / cos x)  =  1 / sin x =  csc x

 

 

 May 27, 2015
 #2
avatar+23254 
+5

cot(x)  =  cos(x) / sin(x)

sec(x)  =  1 / cos(x)

cot(x) · sec(x)  =  [ cos(x) / sin(x) ] · [ 1 / cos(x) ]  =  1/ sin(x)  =  csc(x)

 May 27, 2015
 #3
avatar+26400 
+10
Best Answer

the expression cot times sec is equivalent to what

Weierstrass substitution:

$$\\\small{\text{
$
\boxed{
\rm{if~}t = \tan\tfrac{x}{2} \rm{~then~}
}$}}\\
\small{\text{
$
\boxed{
\sin x = \frac{2t}{1 + t^2},~
\cos x = \frac{1 - t^2}{1 + t^2},~
\tan x = \frac{2t}{1 - t^2},~
\cot x = \frac{1 - t^2}{2t},~
\sec x = \frac{1 + t^2}{1 - t^2},~
\csc x = \frac{1 + t^2}{2t}.
}$}}$$

 

$$\cot{(x)} \cdot \sec {(x)} =
\left( \frac{1 - t^2}{2t} \right)
\cdot
\left( \frac{1 + t^2}{1 - t^2} \right)
= \frac{1 + t^2}{2t} = \csc{( x )}$$

heureka May 27, 2015

1 Online Users