+0  
 
+1
408
5
avatar+1441 

The function f(x) = ax^r satisfies f(2) = 1 and f(32) = 4. Find r.

 

 

Thanks dudes!

 #1
avatar+578 
+1

im just going to accept that i am dumb

edited by OfficialBubbleTanks  Dec 1, 2017
 #2
avatar+1441 
+1

What if the solution was a fraction?

 #3
avatar+578 
0

do you want hundreds of decimal places?

 #4
avatar+7340 
+1

f(x)  =  ax^r

 

f(2)  =  1

a(2)^r  =  1                  Divide both sides by  2^r .

a  =  1 / ( 2^r)

 

f(32)  =  4

a(32)^r  =  4              Divide both sides by  32^r .

a  =  4 / ( 32^r)

 

Set these two values of  a  equal to each other.

 

1 / ( 2^r)  =  4 / (32^r)         Cross multiply.

32^r  =  4 * 2^r                   And we can write  32  and  4  as powers of  2 .

(2^5)^r  =  2^2 * 2^r

2^(5r)  =  2^(2 + r)

5r  =  2 + r

4r  =  2

r  =  1/2

hectictar  Dec 1, 2017
 #5
avatar+1441 
+2

Thanks!


28 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.