We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
 #1
avatar
0

-1 is the answer

 Nov 26, 2019
 #2
avatar+23575 
+3

The function \(f(x)\) satisfies \(f(x) + 2f(1 - x) = 3x^2\) for all real numbers \(x\).
Find \(f(3)\).

 

\(\begin{array}{|l|rcll|} \hline x=-2: & f(-2) + 2f\Big(1 - (-2)\Big) &=& 3(-2)^2 \\ & \color{blue}f(-2) + 2f(3) &\color{blue}=& \color{blue}12 \\ & \mathbf{f(-2)} &=& \mathbf{12-2f(3)} \\\\ x=3: & f(3) + 2f(1 - 3) &=& 3(3)^2 \\ & \color{blue}f(3) + 2f(-2) &\color{blue}=& {\color{blue}27} \quad | \quad \mathbf{f(-2)=12-2f(3)} \\ & f(3) + 2\Big(12-2f(3)\Big) &=& 27 \\ & f(3) + 24 -4f(3)&=& 27 \\ & -3f(3) &=& 27 - 24 \\ & -3f(3) &=& 3 \quad | \quad :(-3) \\ & \mathbf{f(3)} &=& \mathbf{-1} \\ \hline \end{array}\)

 

laugh

 Nov 26, 2019
edited by heureka  Nov 26, 2019
 #3
avatar+105476 
0

Very nice, heureka    !!!!

 

 

cool cool cool

CPhill  Nov 26, 2019

25 Online Users

avatar
avatar