We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website.
Please click on "Accept cookies" if you agree to the setting of cookies. Cookies that do not require consent remain unaffected by this, see
cookie policy and privacy policy.
DECLINE COOKIES

#1**+2 **

Find the distance between C and midpoint of AC with the \(\sqrt{(χ2-χ1)^2+(y2-y1)^2}\) And with this resault is equal with \(\sqrt{(χ3-χ2)^2+(y3-y2)^2}\) (the distance between midpoint of AC and A) and you have x3,y3 unknowns and you have and the equation 7𝑥 + 2𝑦 = 11 so 2 equations and 2 unknowns.So you solve it! Try it alone!

**Hope this helps!**

Dimitristhym Oct 31, 2018

#2**+2 **

The line AB has equation 7𝑥 + 2𝑦 = 11

The point ( 5/ 2 , 10) (x1 , y1) is the midpoint of AC. Find the coordinates of point A

The point C has coordinates (-5, 25 /2 ) (x2 , y2)

**Hello YEEEEEET ! **

**Two-point form**

\(y=\frac{y_2-y_1}{x_2-x_1}(x-x_1)+y_1\\ y=\frac{12.5-10}{-5-2.5}(x-2.5)+10\\ y=-\frac{1}{3}(x-2.5)+10\\ y=-\frac{1}{3}x+10\frac{5}{6}\\ \color{blue}y=-\frac{1}{3}x+\frac{65}{6}\)

\(7x+2y=11\\ y=-3.5x+5.5\\ \color{blue}y=-\frac{7}{2}x+\frac{11}{2}\)

\(-\frac{1}{3}x+\frac{65}{6}=-\frac{7}{2}x+\frac{11}{2}\\ (-\frac{1}{3}+\frac{7}{2})x=\frac{11}{2}-\frac{65}{6}\\ \frac{19}{6}x=-\frac{32}{6}\\ 19x=-32\\ x=-\frac{32}{19}\\ \color{blue}x=-1\frac{13}{19}\)

\(y=-\frac{7}{2}x+\frac{11}{2}\\ y=\frac{-7x+11}{2}\\ y=\frac{-7\cdot (-\frac{32}{19})+11}{2}\\ y=\frac{\frac{224}{19}+11}{2}\\ y=\frac{433}{38}\\ \color{blue}y=11\frac{15}{38}\)

The coordinates of point A are [\(-1\frac{13}{19}\), \(11\frac{15}{38}\) ]

!

asinus Oct 31, 2018