We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
43
1
avatar

The line \(y = (3x + 20)/4\) intersects a circle centered at the origin at A and B. We know the length of chord \(\overline{AB}\) is 20. Find the area of the circle.

 May 8, 2019
 #1
avatar+100519 
+1

Writing the given line in standard form, we have that

 

4y  = 3x + 20

3x - 4y + 20  = 0

 

Using the equation for the distance from a point - (0,0) - to the given line, we have that

 

abs  [ 3(0) - 4(0) + 20 ]              20

__________________  =        _______   =   4  units  

 sqrt [ (3)^2 + (-4)^2 ]               sqrt(25)

 

Call this distance  OP........and a segment drawn  from the center of a circle that is perpendicular to a chord also bisects that chord

 

Since OP is a perpendicular bisector of the chord....we have a right triangle with the radius of the circle as the hypotenuse (OA).....and legs of  (1/2) the chord (AP) length= 10    and   OP =  4

 

So....r^2  =  (10)^2 + (4)^2  =   116

 

So....the area of the circle  =   pi * r^2    =  pi * 116    =   116 pi  units^2

 

 

Here's a pic :

 

 

 

 

cool cool cool

 May 8, 2019
edited by CPhill  May 9, 2019
edited by CPhill  May 9, 2019
edited by CPhill  May 9, 2019

9 Online Users

avatar