+0  
 
0
62
4
avatar+454 

The line with equation 2x+y-5=0 is a tangent to the circle with equation 

(x-3)^2+(y-p)^2=5

a. find the two possible values of p

b.write doen the coordinates of the centre of the circle in each case.

YEEEEEET  Nov 16, 2018
 #1
avatar+92785 
+2

2x + y - 5 = 0

(x-3)^2 + (y - p)^2  = 5

The center of the circle is  (3, p)

And the distance from this center to the point of tangency  is  √5  units

 

Using  the equation for the distance from a point to a line, we have

 

l  2(3) + 1(p) - 5 l

______________   =    √5

√[ 2^2 + 1^2 ]

 

 

l 6 + p - 5 l      =   √5

_________                     multiply both sides by √5

√5

 

 

l  6 + p  -  5 l   = 5

 

l 1 + p l   = 5

 

And we have two equations

 

1 + p  =  5             and        1 +  p   =   - 5

p = 4                                     p = -6

 

 

So.....the  coordinates are   (3, 4)    or  (3, -6)

 

See the graph here : https://www.desmos.com/calculator/asrrgimxfb

 

 

cool cool cool

CPhill  Nov 16, 2018
edited by CPhill  Nov 17, 2018
 #2
avatar+454 
0

thank you very much! may i ask where u got √[ 2^2 + 1^2 ] from?

YEEEEEET  Nov 16, 2018
 #3
avatar+2294 
+1

The formula for the distance from a point to a line is \(d=\frac{|Ax+By+C|}{\sqrt{A^2+B^2}}\) when a line is written in the form \(Ax+By+C=0.\)

Cphill used the given equation for the line \(2x+y-5=0\). Therefore, \(A=2, B=1, \text{ and }C=-5\)

TheXSquaredFactor  Nov 17, 2018
 #4
avatar+92785 
+1

The distance from a point ( m, n)   to  line in the form  Ax + By + C  = 0  is given by :

 

l A(m) + B(n)  + C l

________________

√ [ A^2 + B^2]

 

So....  A = 2,   B = 1  and C = - 5

 

 

cool cool cool

CPhill  Nov 17, 2018

2 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.