+0  
 
0
774
3
avatar+45 

x(t) = 12 cos (5t) + 4 sin (5t)                       
What is the acceleration of the block after 3 seconds?

 Apr 24, 2016
 #1
avatar+37146 
0

Take the derivative twice then substitute t=3 into the equation

 

x'  = -12sin(5t) + 4cos(5t)

x" = -12cos(5t) - 4sin(5t)

    = -12cos(15) -4sin(15)

    = -12.62  units/time^2       I think.

 Apr 24, 2016
 #2
avatar
0

You might think, but you're wrong.

 

The derivative of sin (5t), (for example) is 5cos (5t), not simply cos (5t).

 Apr 24, 2016
 #3
avatar+37146 
+5

Take the derivative twice then substitute t=3 into the equation

 

x'  = -12sin(5t) + 4cos(5t)

x" = -12cos(5t) - 4sin(5t)

    = -12cos(15) -4sin(15)

    = -12.62  units/time^2       I think.

 

Guest is right....Thanx for the correction !

 

x' = - 60 sin (5t) + 20 cos(5t)

x" = - 300 cos (5t) - 100sin (5t)

 

when t = 3     then x" = -315.66

 Apr 25, 2016

3 Online Users

avatar