+0  
 
0
64
1
avatar

The parabolas defined by the equations $y=2x^2-4x+4$ and $y=-x^2-2x+4$ intersect at points $(a,b)$ and $(c,d)$, where $c≥a$. What is $c-a$? Express your answer as a common fraction.

Guest Jan 27, 2018

Best Answer 

 #1
avatar+6297 
+3

y  =  2x^2 - 4x + 4    and    y  =  -x^2 - 2x + 4

 

First let's find the  x  values of the intersection points by solving this equation:

 

2x^2 - 4x + 4   =   -x^2 - 2x + 4

                                                  Add  x^2  to both sides of the equation.

3x^2 - 4x + 4   =   -2x + 4

                                                  Add  2x  to both sides.

3x^2 - 2x + 4   =   4

                                                  Subtract  4  from both sides.

3x^2 - 2x  =  0

                                                  Factor  x  out of the two terms on the left side.

x(3x - 2)   =   0

                                                  Set each factor equal to zero.

x  =  0     or     3x - 2  =  0

                       3x  =  2

                         x  =  2/3

 

The  x  coordinates of the intersection points are  0  and  2/3 .

So   c = 2/3   and   a = 0

 

c - a   =   2/3 - 0   =   2/3

 

Here's a graph to check it:  https://www.desmos.com/calculator/enndawdskv

hectictar  Jan 27, 2018
Sort: 

1+0 Answers

 #1
avatar+6297 
+3
Best Answer

y  =  2x^2 - 4x + 4    and    y  =  -x^2 - 2x + 4

 

First let's find the  x  values of the intersection points by solving this equation:

 

2x^2 - 4x + 4   =   -x^2 - 2x + 4

                                                  Add  x^2  to both sides of the equation.

3x^2 - 4x + 4   =   -2x + 4

                                                  Add  2x  to both sides.

3x^2 - 2x + 4   =   4

                                                  Subtract  4  from both sides.

3x^2 - 2x  =  0

                                                  Factor  x  out of the two terms on the left side.

x(3x - 2)   =   0

                                                  Set each factor equal to zero.

x  =  0     or     3x - 2  =  0

                       3x  =  2

                         x  =  2/3

 

The  x  coordinates of the intersection points are  0  and  2/3 .

So   c = 2/3   and   a = 0

 

c - a   =   2/3 - 0   =   2/3

 

Here's a graph to check it:  https://www.desmos.com/calculator/enndawdskv

hectictar  Jan 27, 2018

18 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details