+0  
 
0
222
1
avatar

The parabolas defined by the equations $y=x^2+4x+6$ and \(y=\frac{1}{2}x^2+x+6\) intersect at points $(a,b)$ and $(c,d)$, where \(c\ge a\). What is c-a?

Guest Jan 24, 2018
 #1
avatar+92816 
+2

Set the functions equal

 

(1/2)x^2 + x + 6   = x^2 + 4x + 6  rearrange as

 

(1/2)x^2  + 3x   =  0

 

Factor

 

x [ (1/2)x + 3 ]  = 0 

 

Setting both factors equal to 0  and solving for x, we have that

 

x   =  0        and   x  =  -6

 

c  = 0     and a  = - 6

 

So   c  - a   =  0 - -6   =  6

 

 

 

cool cool cool

CPhill  Jan 24, 2018
edited by CPhill  Jan 24, 2018

22 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.