+0  
 
0
351
1
avatar

The point (-3,-4) divides the line joining point A(-6,-7) and point B in the ratio 1:3. Find the coordinates of B. 

Guest Jun 29, 2017
 #1
avatar+20038 
0

The point (-3,-4) divides the line joining point A(-6,-7) and point B in the ratio 1:3.

Find the coordinates of B. 

 

\(\text{Set } \vec{P} = \binom{-3}{-4} \\ \text{Set } \vec{A} = \binom{-6}{-7} \\ \text{Set } \vec{B} =\ ?\)

 

Formula:

\(\begin{array}{|rcll|} \hline \vec{P} = (1-\lambda)\vec{A}+\lambda\vec{B} \\ \hline \end{array}\)

 

Ratio 1:3

\(\begin{array}{|rcll|} \hline \lambda &=& \frac{1}{1+3} \\ &=& \frac14 \\ \hline \end{array}\)

 

Solution for \(\vec{B}\):

\(\begin{array}{|rcll|} \hline \vec{P} &=& (1-\lambda)\vec{A}+\lambda\vec{B} \\ \lambda\vec{B} &=& \vec{P} - (1-\lambda)\vec{A} \\ \vec{B} &=& \frac{1}{\lambda} \cdot \Big( \vec{P} - (1-\lambda)\vec{A} \Big) \quad & | \quad \lambda &=& \frac14 \\ \vec{B} &=& \frac{1}{ \frac14 } \cdot \Big( \vec{P} - (1-\frac14)\vec{A} \Big) \\ \vec{B} &=& 4 \cdot ( \vec{P} - \frac34 \vec{A} ) \\ \vec{B} &=& 4 \vec{P} - 3\vec{A} \\ \vec{B} &=& 4 \binom{-3}{-4} - 3\binom{-6}{-7} \\ \vec{B} &=& 4 \binom{-3}{-4} + 3\binom{6}{7} \\ \vec{B} &=& \binom{-12}{-16} + \binom{18}{21} \\ \vec{B} &=& \binom{-12+18}{-16+21} \\ \mathbf{ \vec{B} } & \mathbf{=} & \mathbf{\dbinom{6}{5}} \\ \hline \end{array}\)

 

Point B(6,5)

 

 

laugh

heureka  Jun 30, 2017

27 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.