The points A(5,-3), B(-2,4) and C(-1,7) are three vertices of a parallelogram ABCD. Find the coordinates of vertex D.
The points A(5,-3), B(-2,4) and C(-1,7) are three vertices of a parallelogram ABCD. Find the coordinates of vertex D.
$$\vec{D}=\vec{B} + (\vec{A}- \vec{B}) + (\vec{C}- \vec{B}) \\
\vec{D}=\not{ \vec{B} } + \vec{A} -\not{ \vec{B}} + (\vec{C}- \vec{B}) \\
\boxed{ \vec{D}=\vec{A} + (\vec{C}- \vec{B}) }\\\\
\vec{D}=
\left(
\begin{array}{c} 5\\-3\end{array}
\right)
+ (
\left(
\begin{array}{c} -1\\7\end{array}
\right)
-
\left(
\begin{array}{c} -2\\4\end{array}
\right)
)\\\\
\vec{D}=
\left(
\begin{array}{c} 5+(-1)-(-2)\\-3+7-4\end{array}
\right)\\\\
\vec{D}=
\left(
\begin{array}{c} 5-1+2\\0\end{array}
\right)\\\\
\vec{D}=
\left(
\begin{array}{c}6\\0\end{array}
\right)\\\\$$
Notice that the point (-1, 7) is three units up and 1 unit to the right of point (-2, 4)
So, D will be three units up and one unit to the right of (5, -3)
So D is at (5 + 1, -3 + 3) = (6, 0)
Here's a graph........https://www.desmos.com/calculator/2tucisvosv
The points A(5,-3), B(-2,4) and C(-1,7) are three vertices of a parallelogram ABCD. Find the coordinates of vertex D.
$$\vec{D}=\vec{B} + (\vec{A}- \vec{B}) + (\vec{C}- \vec{B}) \\
\vec{D}=\not{ \vec{B} } + \vec{A} -\not{ \vec{B}} + (\vec{C}- \vec{B}) \\
\boxed{ \vec{D}=\vec{A} + (\vec{C}- \vec{B}) }\\\\
\vec{D}=
\left(
\begin{array}{c} 5\\-3\end{array}
\right)
+ (
\left(
\begin{array}{c} -1\\7\end{array}
\right)
-
\left(
\begin{array}{c} -2\\4\end{array}
\right)
)\\\\
\vec{D}=
\left(
\begin{array}{c} 5+(-1)-(-2)\\-3+7-4\end{array}
\right)\\\\
\vec{D}=
\left(
\begin{array}{c} 5-1+2\\0\end{array}
\right)\\\\
\vec{D}=
\left(
\begin{array}{c}6\\0\end{array}
\right)\\\\$$