+0

# The polynomial \$f(x)\$ has degree 3. If \$f(-1) = 15\$, \$f(0)= 0\$, \$f(1) = -5\$, and \$f(2) = 12\$, then what are the \$x\$-intercepts of the graph

0
174
1

The polynomial \$f(x)\$ has degree 3. If \$f(-1) = 15\$, \$f(0)= 0\$, \$f(1) = -5\$, and \$f(2) = 12\$, then what are the \$x\$-intercepts of the graph of \$f\$?

Guest Apr 27, 2017
Sort:

### 1+0 Answers

#1
+77111
+1

The polynomial will have the form

P(x)  = Ax^3  + Bx^2  + Cx + D

And since (0, 0)  is in the graph   then

A(0)^3  + B(0)^2  + C(0) + D  = 0      so...... D  = 0

And we have these three equations

A(-1)^3  + B(-1)^2  + C (-1)  =  15   →       -A + B - C   =  15        (1)

A(1)^3   + B(1)^2  + C(1)  =  5   →             A  + B + C   = -5         (2)

A(2)^3  +  B(2)^2   + C(2)  =  12   →          8A  + 4B  +  2C   = 12  →  4A + 2B + C  = 6   (3)

Adding (1)  and (2)   we have that 2B   =  10      →  B  = 5

Using (2)  and (3)  and subbing for B we have

A + 5 + C  =  -5   →   A + C  = -10    →   C  = -10  - A     (4)

4A + 10 + C  =  6  →   4A + C = -4  →  C  = -4 - 4A  (5)

Set  (4)  and (5)  equal

-10 - A   =  -4 - 4A

3A  = 6

A  =  2

Using (4)

C = -10 -  (2)

C  = -12

So.....the polynomial is

P(x)   =  2x^3  + 5x^2  -12x

The x intercepts can be found when P(x)  = 0

2x^3  + 5x^2  - 12x  = 0   factor

x (2x^2 + 5x^2  - 12)  = 0

x ( 2x  - 3) ( x + 4)   = 0

Setting each factor to 0 and solving for x the x intercepts are    -4,  0 and  3/2

CPhill  Apr 27, 2017

### 27 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details