+0  
 
0
430
1
avatar

The polynomial $f(x)$ has degree 3. If $f(-1) = 15$, $f(0)= 0$, $f(1) = -5$, and $f(2) = 12$, then what are the $x$-intercepts of the graph of $f$?

Guest Apr 27, 2017
 #1
avatar+90056 
+1

 

The polynomial will have the form

 

P(x)  = Ax^3  + Bx^2  + Cx + D

 

And since (0, 0)  is in the graph   then

 

A(0)^3  + B(0)^2  + C(0) + D  = 0      so...... D  = 0

 

And we have these three equations

 

A(-1)^3  + B(-1)^2  + C (-1)  =  15   →       -A + B - C   =  15        (1)

A(1)^3   + B(1)^2  + C(1)  =  5   →             A  + B + C   = -5         (2)

A(2)^3  +  B(2)^2   + C(2)  =  12   →          8A  + 4B  +  2C   = 12  →  4A + 2B + C  = 6   (3)

 

Adding (1)  and (2)   we have that 2B   =  10      →  B  = 5

 

Using (2)  and (3)  and subbing for B we have

 

A + 5 + C  =  -5   →   A + C  = -10    →   C  = -10  - A     (4)

4A + 10 + C  =  6  →   4A + C = -4  →  C  = -4 - 4A  (5)

 

Set  (4)  and (5)  equal

 

-10 - A   =  -4 - 4A

3A  = 6

A  =  2

 

Using (4)

C = -10 -  (2)    

C  = -12

 

So.....the polynomial is

 

P(x)   =  2x^3  + 5x^2  -12x

 

The x intercepts can be found when P(x)  = 0

 

2x^3  + 5x^2  - 12x  = 0   factor

 

x (2x^2 + 5x^2  - 12)  = 0

 

x ( 2x  - 3) ( x + 4)   = 0

 

Setting each factor to 0 and solving for x the x intercepts are    -4,  0 and  3/2

 

 

 

cool cool cool

CPhill  Apr 27, 2017

26 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.