We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
121
1
avatar

The polynomial f(x) has degree 3. If f(-1)=15, f(0)=0, f(1)=5 and f(2)=12, then what are the x-intercepts of the graph of f?

 Nov 3, 2018

Best Answer 

 #1
avatar+5091 
+2

\(\text{here may be some clever way to attack this but if so I'm not aware of it}\\ p(x) = a x^3 + b x^2 + c x + d\\ \text{using the function values give we can form the equations}\\ -a+b-c+d=15\\ d=0\\ a+b+c+d=5\\ 8a+4b+2c+d=12\\ \text{I would dump these into a matrix and solve it like that}\\ \begin{pmatrix}-1 &1 &-1 &1\\0 &0 &0 &1 \\1 &1 &1 &1 \\8 &4 &2 &1\end{pmatrix} \begin{pmatrix}a \\ b\\ c \\ d\end{pmatrix} = \begin{pmatrix}15 \\0 \\5 \\12 \end{pmatrix}\)

 

Solving this using the method of you choice  we find

 

\(a=-3,~b=10,~c=-2,~d=0 \\ p(x) = -3x^3 + 10x^2 -2x\)

 

The x-intercepts occur where p(x)=0, factoring we get

 

\(p(x)=-3x^3+10x^2-2x = \\ -x(3x^2 - 10x+2)\\ \text{and this has zeros at } x=0 \text{ and}\\ x = \dfrac{10\pm \sqrt{100-24}}{6} = \dfrac 1 3\left(5 \pm \sqrt{19}\right)\)

.
 Nov 4, 2018
edited by Rom  Nov 4, 2018
 #1
avatar+5091 
+2
Best Answer

\(\text{here may be some clever way to attack this but if so I'm not aware of it}\\ p(x) = a x^3 + b x^2 + c x + d\\ \text{using the function values give we can form the equations}\\ -a+b-c+d=15\\ d=0\\ a+b+c+d=5\\ 8a+4b+2c+d=12\\ \text{I would dump these into a matrix and solve it like that}\\ \begin{pmatrix}-1 &1 &-1 &1\\0 &0 &0 &1 \\1 &1 &1 &1 \\8 &4 &2 &1\end{pmatrix} \begin{pmatrix}a \\ b\\ c \\ d\end{pmatrix} = \begin{pmatrix}15 \\0 \\5 \\12 \end{pmatrix}\)

 

Solving this using the method of you choice  we find

 

\(a=-3,~b=10,~c=-2,~d=0 \\ p(x) = -3x^3 + 10x^2 -2x\)

 

The x-intercepts occur where p(x)=0, factoring we get

 

\(p(x)=-3x^3+10x^2-2x = \\ -x(3x^2 - 10x+2)\\ \text{and this has zeros at } x=0 \text{ and}\\ x = \dfrac{10\pm \sqrt{100-24}}{6} = \dfrac 1 3\left(5 \pm \sqrt{19}\right)\)

Rom Nov 4, 2018
edited by Rom  Nov 4, 2018

9 Online Users

avatar