We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
198
1
avatar

The solutions of  may be expressed in the form (a-b^1/2)/c and , (a+ b^1/2)/c where , , and  are prime numbers. Find .The solutions of $x(x-3)=1$ may be expressed in the form $\frac{a+\sqrt{b}}{c}$ and $\frac{a-\sqrt{b}}{c}$, where $a$, $b$, and $c$ are prime numbers. Find $abc$.

 Sep 27, 2018
edited by Guest  Sep 27, 2018
 #1
avatar+101872 
+1

\(x(x-3)=1\)

 

\($\frac{a+\sqrt{b}}{c}$ and $\frac{a-\sqrt{b}}{c}$\)

 

 

x( x - 3)  = 1

 

x^2 - 3x   = 1     subtract 1 from  both sides

 

x^2  - 3x  + 1    = 0  

 

Using the quadratic formula...   we have

 

x  =  [3 ±√ [9 - 4(1)(1) ]  / 2   =  [ 3 ±√ 5 ] / 2

 

So  abc  =  3 * 5 * 2    =  30

 

 

cool cool cool

 Sep 27, 2018

13 Online Users

avatar