+0  
 
-1
1
4839
2
avatar+1836 

The sum of the first three terms of a geometric sequence of positive integers is equal to seven times the first term, and the sum of the first four terms is 45. What is the first term of the sequence?

 Aug 4, 2016
 #1
avatar+33661 
-1

a + a*r + a*r^2 = 7a                             (1)  (a is the first term)

 

a + a*r + a*r^2 + a*r^3 = 45                 (2)

 

Divide each term in (1) by a:

1 + r + r^2 = 7    or r^2 +r - 6 = 0    or (r -2)(r + 3) = 0   r = 2 or r = -3

 

Factor a from (2) and rearrange as:

a = 45/(1 + r + r^2 + r^3)

 

a = 45/(7 + r^3)

 

If r = 2 then a = 45/15  or a = 3    

 

If r = -3 then a = 45/(7 - 27)   or a = -45/20  or a = -9/4

.

 Aug 4, 2016
 #2
avatar+129852 
+4

Let a be the first term    and the next three terms are ar, ar^2, ar^3.......and we have that

 

7a =  a  +  ar + ar^2     (1)     and

 

45 =  a  +  ar + ar^2 + ar^3   (2)

 

Rearranging (1), we have    0 = -6a + ar + ar^2     divide through by a

 

0 = -6 + r + r^2      factor

 

0 = (r + 3) ( r -2)      so........r = 2  or r = -3    

 

Using  (2)  and letting r = 2, we have

 

45  = a + 2a + 4a + 8a

 

45 = 15a

 

a = 3

 

Using (2)  and letting r = -3, we have

 

45 = a - 3a  + 9a -27a

 

45  = -20a

 

a = -45/20  = -9/4     but, since a has to be a positive integer, reject this

 

So....the series is

 

3, 6, 12, 24

 

 

 

cool cool cool

 Aug 4, 2016

3 Online Users

avatar