+0  
 
0
52
1
avatar

The vector \(\begin{pmatrix} 4 \\ -7 \end{pmatrix}\) is orthogonal to the vector \(\begin{pmatrix} 3 \\ k \end{pmatrix}\). The vector \(\begin{pmatrix} 2 \\ m \end{pmatrix}\) is orthogonal to the vector \(\begin{pmatrix} 3 \\ k \end{pmatrix}\). Find m .

 Feb 2, 2019
 #1
avatar+96080 
+1

If vectors are orthagonal, their dot product = 0

 

So

 

[ 4 * 3 ] + [ -7 * k] = 0

12 - 7k = 0

-7k = -12

k = 12/7

 

So

[2 * 3 ] + [12/7 * m] = 0

6 + (12/7)m = 0

(12/7)m = - 6

m = -6*7/12 = -7/2

 

 

cool cool cool

 Feb 2, 2019

37 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.