+0  
 
0
14
1
avatar+9 

There is a point $P$ inside equilateral $\triangle ABC$ such that $PA=PB=PC=x.$ We know $[ABC]=\dfrac{\sqrt 3}{3}.$ Find $x.$

 Jul 20, 2024
 #1
avatar+130085 
+1

sqrt (3) / 3 = (1/2) s^2 * sqrt (3) / 2       where s is the side of the triangle

 

1/3 = (1/4)s^2

 

4/3  = s^2

 

We have triangle APB

angle PAB = angle PBA = 30

angle APB = 120

 

Law of Cosines

 

s^2 = 2x^2 - 2x^2 * cos (120)

 

s^2 = 2x^2 - 2x^2 *(-1/2)

 

s^2 = 3x^2

 

4/3 = 3x^2

 

4/9 = x^2

 

2/3 = x

 

cool cool cool

 Jul 20, 2024

0 Online Users