+0

# This is hard

+1
51
1
+79

help.

sangangsx  Mar 31, 2018

#1
+6943
+3

Let the coordinates of the third point be  (x, y) .  Since the triangle is equilateral...

distance between  (x, y)  and  (-1, 2)   =   distance between  (x, y)  and  (4, 2)

$$\sqrt{(-1-x)^2+(2-y)^2}\,=\,\sqrt{(4-x)^2+(2-y)^2} \\ (-1-x)^2+(2-y)^2\,=\,(4-x)^2+(2-y)^2 \\ (-1-x)^2\,=\,(4-x)^2 \\ (-1-x)\,=\,\pm(4-x)\\ \begin{array}\ (-1-x)=+(4-x)\qquad&\text{or}&\qquad(-1-x)=-(4-x)\\ -1-x=4-x&&\qquad-1-x=-4+x\\ -1=4&&\qquad-1=-4+2x\\ \text{not a solution}&&\qquad3=2x\\ &&\qquad\frac32=x \end{array}$$

So we know that the x coordinate must be  3/2 , which is 1.5 .

To find the y coordinate, we need to make another equation.

distance between  (-1,2)  and  (4, 2)   =   4 - -1   =   5      So...

distance between (-1, 2)  and  (1.5, y)   =   5

$$\sqrt{(-1-1.5)^2+(2-y)^2}=5\\ \sqrt{6.25+(2-y)^2}=5\\ 6.25+(2-y)^2=25\\(2-y)^2=18.75\\2-y=\pm\sqrt{18.75}\\ -y=\pm\sqrt{18.75}-2\\ y=\pm\sqrt{18.75}+2\\ \begin{array}\ y=\sqrt{18.75}+2\qquad\text{or}\qquad&&y=-\sqrt{18.75}+2\\ y\approx6.3&&y\approx-2.3 \end{array}$$

So the solutions for  (x, y)  are:  (1.5, 6.3)  and  (1.5, -2.3)

hectictar  Mar 31, 2018
edited by hectictar  Mar 31, 2018
edited by hectictar  Mar 31, 2018
Sort:

#1
+6943
+3

Let the coordinates of the third point be  (x, y) .  Since the triangle is equilateral...

distance between  (x, y)  and  (-1, 2)   =   distance between  (x, y)  and  (4, 2)

$$\sqrt{(-1-x)^2+(2-y)^2}\,=\,\sqrt{(4-x)^2+(2-y)^2} \\ (-1-x)^2+(2-y)^2\,=\,(4-x)^2+(2-y)^2 \\ (-1-x)^2\,=\,(4-x)^2 \\ (-1-x)\,=\,\pm(4-x)\\ \begin{array}\ (-1-x)=+(4-x)\qquad&\text{or}&\qquad(-1-x)=-(4-x)\\ -1-x=4-x&&\qquad-1-x=-4+x\\ -1=4&&\qquad-1=-4+2x\\ \text{not a solution}&&\qquad3=2x\\ &&\qquad\frac32=x \end{array}$$

So we know that the x coordinate must be  3/2 , which is 1.5 .

To find the y coordinate, we need to make another equation.

distance between  (-1,2)  and  (4, 2)   =   4 - -1   =   5      So...

distance between (-1, 2)  and  (1.5, y)   =   5

$$\sqrt{(-1-1.5)^2+(2-y)^2}=5\\ \sqrt{6.25+(2-y)^2}=5\\ 6.25+(2-y)^2=25\\(2-y)^2=18.75\\2-y=\pm\sqrt{18.75}\\ -y=\pm\sqrt{18.75}-2\\ y=\pm\sqrt{18.75}+2\\ \begin{array}\ y=\sqrt{18.75}+2\qquad\text{or}\qquad&&y=-\sqrt{18.75}+2\\ y\approx6.3&&y\approx-2.3 \end{array}$$

So the solutions for  (x, y)  are:  (1.5, 6.3)  and  (1.5, -2.3)

hectictar  Mar 31, 2018
edited by hectictar  Mar 31, 2018
edited by hectictar  Mar 31, 2018

### 26 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details