+0

# THIS IS IMPORTANT! PLEASE CAN YOU HELP ME? CPHILL? ANY OF THE AWESOME PEOPLE?

0
1
84
4

If ,$$\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot...\cdot\frac{n}{n+1} = \frac{1}{50}$$ what is the sum of the numerator and denominator of the largest fraction on the left side of the equation?

Mar 27, 2020

#1
+111321
+1

Note   that  in all the  fractions, the  denominator  of the  previous fraction will "cancel"  the  numerator  of the  next

So   at the end  we  will   have  this left

2                  1

_______  =        ___      cross-multiply

n +  1                50

50 (2)  =  1 ( n + 1)

100 =   n + 1       subtract  1  from both sides

99   =  n

n + 1  =  100

So....the  sum   of  n , n + 1  =    199

Mar 27, 2020
#2
+1956
+1

Chris!! You beat me to it!!!

CalTheGreat  Mar 27, 2020
#4
+111321
0

LOL!!!!....sorry, Cal    !!!!!

CPhill  Mar 27, 2020
#3
+1956
+1

Here is another answer, even though I'm not one of the "awesome people>"

Since all of these cross out, we're left with

2/(n+1)=1/50.

Therefore, the number has to be 1/100, making n+1 100.

Therefore, n=100,

100+99=199.

Hope this helped!

Mar 27, 2020