its been all morning since ive been trying to understand " arithmetic geometric progression" ...i have read the same theory and the same formulas for finding sum of "n " terms and have tried to understand it and solve questions but i cant, i just dont get it , pls help me,
here is a referce site, the theory of this site is exactly the same as my book so im putting it up, pls look it up and help me understand , i dont get the formula and its derivation and even if i try to mug it up , i cant solve the questions with it, one or 2 egs of the questions are :
find the sum of n terms of the series:
A) 1+ 2x + 3x^2 + 4x^3 +.....
B ) 1.2^2 + 2.3^2 + 3.4^2 + ......
pls help someone, the site is http://www.askiitians.com/iit-jee-progressions-and-series/arithmetic-geometric-progression/
I have never done anything like this before so it was a little difficult for me too.
There are some typo style errors in the online derivation which certainly would have helped confuse you. ![]()
Each term if the product of an AP term and a GP term
The AP is a, a+d, a+2d, …. a+(n-1)d ….
The GP is b, br, br^2, …… br^(n-1), …..
The AP-GP is ab, (a+d)br, (a+2d)br^2, …… [a+(n-1)d]br^n-1 ….
Now you want the sum to n terms.
\(S_n=ab+(a+d)br \;+(a+2d)br^2 +(a+3d)br^3\;+\; \dots\;+[a+(n-1)d]br^{n-1}\\ \text{multiply both sides by r}\\ rS_n=\qquad \qquad abr \;+\; (a+d)br^2 \;+\; (a+2d)br^3 \;+\; \dots\;\;+[a+(n-2)d]br^{n-1}+\;\; [a+(n-1)d]br^{n}\\ subtract\\ (1-r)S_n=ab+br(a+d-a)+br^2(a+2d-a-d)+...+br^{n-1}[a+(n-1)d-\{a+(n-2)d\}]-[a+(n-1)d]br^{n}\\ (1-r)S_n=ab+br(d)+br^2(2d-d)+...+br^{n-1}[(n-1)d-\{(n-2)d\}]-[a+(n-1)d]br^{n}\\ (1-r)S_n=ab+br(d)+br^2(2d-d)+...+br^{n-1}[(nd-d-nd+2d]-[a+(n-1)d]br^{n}\\ (1-r)S_n=ab+brd+br^2d+...+br^{n-1}d-[a+(n-1)d]br^{n}\\ (1-r)S_n=ab+bdr+bdr^2+...+bdr^{n-1}-[a+(n-1)d]br^{n}\\~\\ (1-r)S_n=ab+[bdr+bdr^2+...+bdr^{n-1}]-[a+(n-1)d]br^{n}\\ \\~\\(1-r)S_n=ab+[sum\;of\;GP]\qquad \qquad -[a+(n-1)d]br^{n}\\ \)
Let's look at the sum of a GP part
\(bdr+bdr^2+...+bdr^{n-1}\\ \text{The first term is bdr and the common ratio is r so}\\ =(bdr)+(bdr)r+...+(bdr)r^{n-2}\\ \text{So the last term is the n-1 term}\\ \text{so in the formula for the sum of a GP r is r, a is replaced with bdr, and n is replaced with n-1}\\ =\frac{bdr(1-r^{n-1})}{1-r}\\ =\frac{bdr(\frac{r-r^n}{r})}{1-r}\\ =\frac{bd(r-r^n)}{1-r}\\ =\frac{bdr(1-r^{n-1})}{1-r}\\ so\\ (1-r)S_n=ab+[sum\;of \;a\;GP]-[a+(n-1)d]br^{n}\\ (1-r)S_n=ab+[\frac{bdr(1-r^{n-1})}{1-r}]-[a+(n-1)d]br^{n}\\ \)
\((1-r)S_n=ab+[\frac{bdr(1-r^{n-1})}{1-r}]-[a+(n-1)d]br^{n}\\~\\ S_n=\dfrac{ab}{1-r}+\dfrac{bdr(1-r^{n-1})}{(1-r)^2}-\dfrac{[a+(n-1)d]br^{n}}{1-r}\\\)
------------------------------------------
Oh dear, some of my latex has been trucated.
![]()
I think you should still be able to work it out but let me know if you cannot follow it :/ ![]()
B) I do not know the formula for this, but summing up the first 10 terms gives:
∑[ n^2*(n-1), n=2 to 11] =3,850.
\( S_n=\frac{ab}{1-r}+\frac{bdr(1-r^{n-1})}{(1-r)^2}-\frac{[a+(n-1)d]br^{n}}{1-r}\\ \)
find the sum of n terms of the series:
A) 1+ 2x + 3x^2 + 4x^3 +.....
AP=1, 2, 3, ................(n-1) ....... a=1, d=1
GP=1, x, x^2, ..............x^(n-1) b=1, r=x
so
\( S_n=\frac{ab}{1-r}+\frac{bdr(1-r^{n-1})}{(1-r)^2}-\frac{[a+(n-1)d]br^{n}}{1-r}\\ S_n=\frac{1*1}{1-x}+\frac{1*1*x(1-x^{n-1})}{(1-x)^2}-\frac{[1+(n-1)*1]1*x^{n}}{1-x}\\ S_n=\frac{1}{1-x}+\frac{x(1-x^{n-1})}{(1-x)^2}-\frac{[1+(n-1)]x^{n}}{1-x}\\ S_n=\frac{1}{1-x}+\frac{x(1-x^{n-1})}{(1-x)^2}-\frac{nx^{n}}{1-x}\\ S_n=\frac{1-nx}{1-x}+\frac{x(1-x^{n-1})}{(1-x)^2}\\ \)
B ) 1.2^2 + 2.3^2 + 3.4^2 + ...
oh dear, this one is harder......
B ) 1.2^2 + 2.3^2 + 3.4^2 + ......
This is what Wolfram alpha has to say about B
(I'm still thinking about it)
http://www.wolframalpha.com/input/?i=1*2%5E2+%2B+2*3%5E2+%2B+3*4%5E2+%2B+...+%2Bn*(n%2B1)%5E2
find the sum of n terms of the series:
A) 1+ 2x + 3x^2 + 4x^3 +.....
like Euler:
\(\begin{array}{|rcll|} \hline \mathbf{s_n} &\mathbf{=}& \mathbf{1+ 2x + 3x^2 + 4x^3 +\ldots +n x^{n-1}} \quad & | \quad \cdot dx \\ s_n dx &=& dx+ 2xdx + 3x^2dx + 4x^3dx +\ldots +nx^{n-1}dx \quad & | \quad \int{} \\ \int{s_n dx} &=& x+ 2\frac{x^2}{2} + 3\frac{x^3}{3} + 4\frac{x^4}{4} +\ldots +n\frac{x^n}{n} \\ \int{s_n dx} &=& x+ x^2 + x^3 + x^4 +\ldots + x^n = \frac{x-x^{n+1}} {1-x} \\ \int{s_n dx} &=& \frac{x-x^{n+1}} {1-x} \\ \int{s_n dx}&=& \frac{x-x^{n+1}} {1-x} = [x-x^{n+1}][(1-x)^{-1}] \quad & | \quad \text{derivate} \\ s_n &=& [1-(n+1)x^n](1-x)^{-1}+ (x-x^{n+1})(-1)(1-x)^{-2}(-1) \\ s_n &=& \frac{1-(n+1)x^n} {1-x} + \frac{x-x^{n+1}} {(1-x)^2} \\ s_n &=& \frac{1-(n+1)x^n} {1-x} \left(\frac{1-x}{1-x}\right) + \frac{x-x^{n+1}} {(1-x)^2} \\ s_n &=& \frac{[1-(n+1)x^n](1-x)+x-x^{n+1}} {(1-x)^2} \\ s_n &=& \frac{1-x-(n+1)x^n+(n+1)x^{n+1}+x-x^{n+1}} {(1-x)^2} \\ s_n &=& \frac{1 -(n+1)x^n+(n+1)x^{n+1} -x^{n+1}} {(1-x)^2} \\ s_n &=& \frac{1 -(n+1)x^n+[-1+(n+1)]x^{n+1} } {(1-x)^2} \\ \mathbf{s_n} & \mathbf{=}& \mathbf{\dfrac{1 -(n+1)x^n+n x^{n+1} } {(1-x)^2} } \\ \hline \end{array}\)
B ) 1.2^2 + 2.3^2 + 3.4^2 + ......
\(\begin{array}{|rcll|} \hline \mathbf{s_n} &\mathbf{=}& \mathbf{1\cdot 2^2 + 2\cdot3^2 + 3\cdot4^2 +\ldots +n \cdot (n+1)^2 } \\ s_n &=& \sum \limits_{k=1}^{n} k \cdot (k+1)^2 \\ &=& \sum \limits_{k=1}^{n} k \cdot (k^2+2k+1) \\ &=& \sum \limits_{k=1}^{n} (k^3+2k^2+k) \\ &=& \sum \limits_{k=1}^{n} (k^3) + \sum \limits_{k=1}^{n} (2k^2) + \sum \limits_{k=1}^{n} (k) \\ &=& \sum \limits_{k=1}^{n} (k^3) + 2\sum \limits_{k=1}^{n} (k^2) + \sum \limits_{k=1}^{n} (k) \\ && \begin{array}{|rcll|} \hline \sum \limits_{k=1}^{n} (k^3) &=& 1^3+2^3+3^3+ \ldots + n^3 = \left(\frac{n(n+1)}{2}\right)^2 \\ \sum \limits_{k=1}^{n} (k^2) &=& 1^2+2^2+3^2+ \ldots + n^2 = \frac{n(n+1)(2n+1)}{6} \\ \sum \limits_{k=1}^{n} (k) &=& 1+2+3+ \ldots + n = \frac{n(n+1)}{2} \\ \hline \end{array} \\ &=& \left(\frac{n(n+1)}{2}\right)^2 + 2\cdot \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} \\ &=& \left(\frac{n(n+1)}{2}\right)\left( \frac{n(n+1)}{2} + \frac23\cdot(2n+1) +1\right) \\ &=& \left(\frac{n(n+1)}{2}\right)\left(\frac{3n(n+1)+4(2n+1)+6}{6}\right) \\ &=& \left(\frac{n(n+1)}{12}\right) \Big( 3n(n+1)+4(2n+1)+6 \Big) \\ &=& \frac{n(n+1)[3n(n+1)+4(2n+1)+6]}{12} \\ &=& \frac{n(n+1)(3n^2+3n+8n+4+6)}{12} \\ &=& \frac{n(n+1)(3n^2+11n+10)}{12} \\ \mathbf{s_n} &\mathbf{=}& \mathbf{\dfrac{n(n+1)(n+2)(3n+5)}{12}} \\ \hline \end{array}\)
![]()