Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
55
1
avatar+1729 

I don't know what to do here!!!!  Help!!!

 

In parallelogram EFGH, let M be the point on ¯EF such that FM:ME=3:5, and let N be the point on ¯EH such that HN:NE=2:5.  Line segments ¯FH and ¯GM intersect at P, and line segments ¯FH and ¯GN intersect at Q.  Find PQFH.

 Dec 14, 2023
 #1
avatar+130466 
+1

 

 

 

Triangle HQN similar to Triangle FQG

HN / FG =  2 / 7

Therefore  HQ / FQ  = 2 / 7

Therefore  HQ / (HQ + FQ) =  HQ / HF  =  2 / ( 2 + 7)  = 2/9  ⇒ HQ = (2/9) HF

 

Triangle PFM similar to Triangle PHG

FM / HG =  3 / 8

Therefore PF / PH = 3 / 8

Therfore PF / (PF + PH)  = PF / HF  = 3 /( 3 + 8) = 3 / 11 ⇒  PF = (3/11) HF 

 

Getting a common denominator  between  9  and 11

HQ = 22/99FH

PF  = 27/99 FH

 

Therefore

FH - HQ - PF  =  PQ

FH - (22/99)FH - (27/99)FH  = PQ

(50/99)FH  = PQ

 

Therefore

PQ / FH  =  50 / 99

 

cool cool cool

 Dec 14, 2023

1 Online Users