+0  
 
0
1012
1
avatar

This rectangular prism is intersected by a plane that contains points B, D, H, and F.

 

What is the perimeter of the cross section?

 

Round to the nearest tenth.

 

Guest May 7, 2017

Best Answer 

 #1
avatar+7324 
+4

perimeter = BD + DH + HF + FB

 

BD = HF      and     DH = FB

so...

perimeter = HF + FB  + HF + FB

perimeter = 2HF + 2FB

 

72 + 82 = HF2   →   HF = \(\sqrt{113}\)     cm

FB = 6     cm

 

perimeter = 2\(\sqrt{113}\) + 2(6)

perimeter = 2\(\sqrt{113}\) + 12

perimeter ≈ 33.3     cm

hectictar  May 7, 2017
 #1
avatar+7324 
+4
Best Answer

perimeter = BD + DH + HF + FB

 

BD = HF      and     DH = FB

so...

perimeter = HF + FB  + HF + FB

perimeter = 2HF + 2FB

 

72 + 82 = HF2   →   HF = \(\sqrt{113}\)     cm

FB = 6     cm

 

perimeter = 2\(\sqrt{113}\) + 2(6)

perimeter = 2\(\sqrt{113}\) + 12

perimeter ≈ 33.3     cm

hectictar  May 7, 2017

9 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.