+0  
 
0
3327
1
avatar

This rectangular prism is intersected by a plane that contains points B, D, H, and F.

 

What is the perimeter of the cross section?

 

Round to the nearest tenth.

 

 May 7, 2017

Best Answer 

 #1
avatar+9481 
+4

perimeter = BD + DH + HF + FB

 

BD = HF      and     DH = FB

so...

perimeter = HF + FB  + HF + FB

perimeter = 2HF + 2FB

 

72 + 82 = HF2   →   HF = \(\sqrt{113}\)     cm

FB = 6     cm

 

perimeter = 2\(\sqrt{113}\) + 2(6)

perimeter = 2\(\sqrt{113}\) + 12

perimeter ≈ 33.3     cm

 May 7, 2017
 #1
avatar+9481 
+4
Best Answer

perimeter = BD + DH + HF + FB

 

BD = HF      and     DH = FB

so...

perimeter = HF + FB  + HF + FB

perimeter = 2HF + 2FB

 

72 + 82 = HF2   →   HF = \(\sqrt{113}\)     cm

FB = 6     cm

 

perimeter = 2\(\sqrt{113}\) + 2(6)

perimeter = 2\(\sqrt{113}\) + 12

perimeter ≈ 33.3     cm

hectictar May 7, 2017

0 Online Users