We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
320
2
avatar+874 

Given that \(a\)  is a multiple of \(1428\), find the greatest common divisor of \(a^2+9a+24\) and \(a+4\).

 Feb 7, 2018
 #1
avatar
+1

Since 1428 = 2^2 * 3 * 7 * 17, and the first factor, or 4, is common to the polynomial

[a^2 + 9 a + 24 and  a + 4], then no matter what value "a" takes, the GCD of a*1428 and the polynomial will always be the same, namely: 2 x 2 = 4. 

 Feb 7, 2018
 #2
avatar+4296 
+1

We can use the Euclidean Algorithm. \(\begin{align*} &\text{gcd}\,(a^2+9a+24,a+4) \\ &\qquad=\text{gcd}\,(a^2+9a+24-(a+5)(a+4),a+4)\\ &\qquad=\text{gcd}\,(a^2+9a+24-(a^2+9a+20),a+4)\\ &\qquad=\text{gcd}\,(4,a+4). \end{align*}\) Since \(4\) is a factor of \(a\) and thus \(a+4\) , the greatest common divisor is \(\boxed{4}\).

 Feb 7, 2018

4 Online Users

avatar