+0

# title!

0
37
2
+364

Given that $$a$$  is a multiple of $$1428$$, find the greatest common divisor of $$a^2+9a+24$$ and $$a+4$$.

ant101  Feb 7, 2018
Sort:

#1
+1

Since 1428 = 2^2 * 3 * 7 * 17, and the first factor, or 4, is common to the polynomial

[a^2 + 9 a + 24 and  a + 4], then no matter what value "a" takes, the GCD of a*1428 and the polynomial will always be the same, namely: 2 x 2 = 4.

Guest Feb 7, 2018
#2
+1704
+1

We can use the Euclidean Algorithm. \begin{align*} &\text{gcd}\,(a^2+9a+24,a+4) \\ &\qquad=\text{gcd}\,(a^2+9a+24-(a+5)(a+4),a+4)\\ &\qquad=\text{gcd}\,(a^2+9a+24-(a^2+9a+20),a+4)\\ &\qquad=\text{gcd}\,(4,a+4). \end{align*} Since $$4$$ is a factor of $$a$$ and thus $$a+4$$ , the greatest common divisor is $$\boxed{4}$$.

tertre  Feb 7, 2018

### 20 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details