+0  
 
0
294
1
avatar

Trapezoid ABCD has base AB = 20 units and base CD = 30 units. Diagonals AC and BD intersect at X. If the area of trapezoid ABCD is 300 square units, what is the area of triangle BXC?

 

thank

Guest Mar 23, 2018
 #1
avatar+92734 
+1

 

 

We can find the height of the ttrapezoid thusly

 

300  =  h ( 30 + 20) /2

300 = h * 25

!2  = h

 

Let A  = (5,12)   B  = (25,12)  C  = (30,0)  and D  = (0,0)

 

 

The area  of triangle DBC  = (1/2) CD * 12  =  (1/2) (30) * 12  =  180  units^2     (1)

 

The  equation  of line segment BD  is

y  =(12/25)x

 

The y coordinate  of X   is the height of triangle CXD and   can be found as

 

y  =  (12/25) (15)   = 3/5 * 12  = 7.2

 

So....the area of triangle  CXD  = (1/2)(CD)(7.2)  = (1/2)(30)(7.2)  = 108 units^2     (2)

 

So...the area  of triangle BXC  =  (1)  - (2)  =  180  - 108  =  72 units^2

 

Here's a pic :

 

 

cool cool cool

CPhill  Mar 23, 2018

16 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.