We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# Trapezoid ABCD has base AB = 20 units and base CD = 30 units. Diagonals AC and BD intersect at X. If the area of trapezoid

0
514
1

Trapezoid ABCD has base AB = 20 units and base CD = 30 units. Diagonals AC and BD intersect at X. If the area of trapezoid ABCD is 300 square units, what is the area of triangle BXC?

thank

Mar 23, 2018

### 1+0 Answers

#1
+1

We can find the height of the ttrapezoid thusly

300  =  h ( 30 + 20) /2

300 = h * 25

!2  = h

Let A  = (5,12)   B  = (25,12)  C  = (30,0)  and D  = (0,0)

The area  of triangle DBC  = (1/2) CD * 12  =  (1/2) (30) * 12  =  180  units^2     (1)

The  equation  of line segment BD  is

y  =(12/25)x

The y coordinate  of X   is the height of triangle CXD and   can be found as

y  =  (12/25) (15)   = 3/5 * 12  = 7.2

So....the area of triangle  CXD  = (1/2)(CD)(7.2)  = (1/2)(30)(7.2)  = 108 units^2     (2)

So...the area  of triangle BXC  =  (1)  - (2)  =  180  - 108  =  72 units^2

Here's a pic :    Mar 23, 2018