Triangle CUB has angles C = 66 and B = 80 and side BC = 5 cm. What is the area of the triangle?
If h is the height, then
h/tan(80°) + h/tan(66°) = 5 so h = 5/(1/tan(80°) + 1/tan(66°))
The area is just (1/2)*5*h
$${\mathtt{Area}} = {\frac{\left({\frac{{\mathtt{1}}}{{\mathtt{2}}}}\right){\mathtt{\,\times\,}}{\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{5}}}{\left({\frac{{\mathtt{1}}}{\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}{\left({\mathtt{80}}^\circ\right)}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}{\left({\mathtt{66}}^\circ\right)}}}\right)}} \Rightarrow {\mathtt{Area}} = {\mathtt{20.110\: \!829\: \!461\: \!342\: \!909\: \!5}}$$
Area ≈ 20.11 cm2
.
If h is the height, then
h/tan(80°) + h/tan(66°) = 5 so h = 5/(1/tan(80°) + 1/tan(66°))
The area is just (1/2)*5*h
$${\mathtt{Area}} = {\frac{\left({\frac{{\mathtt{1}}}{{\mathtt{2}}}}\right){\mathtt{\,\times\,}}{\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{5}}}{\left({\frac{{\mathtt{1}}}{\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}{\left({\mathtt{80}}^\circ\right)}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}{\left({\mathtt{66}}^\circ\right)}}}\right)}} \Rightarrow {\mathtt{Area}} = {\mathtt{20.110\: \!829\: \!461\: \!342\: \!909\: \!5}}$$
Area ≈ 20.11 cm2
.