+0  
 
0
81
1
avatar+516 

We can find an acute triangle with the three altitude lengths \(1\)\(2\), and \(h\), if and only if \(h^2\) belongs to interval \((p,q)\). Find \((p,q)\).

 

Any help is appreciated thanks smiley

 Jan 25, 2022
 #1
avatar+516 
0

I got it! The answer is \(({4\over5},{4\over3})\).

 

Here is how I got it:

 

Let S be the twice the area of the triangle. Then the side lengths are S, S/2, and S/h. Since the triangle is acute, these side lengths must satisfy these inequalities:

\(S^2 + ({S\over2})^2>({S\over h})^2\)

\(({S\over2})^2+({S\over h})^2 >S^2\)

\(S^2 + ({S\over h})^2>({S\over2})^2\)

 

We can divide each inequality by \(S^2\) to simplify, and the third inequality will automatically be satisfied, so we are left with:

\(1 + {1\over4} > {1\over h^2}\)

\({1\over4} + {1\over h^2} > 1\)

 

Simplifying, we get h^2>4/5, and h^2<4/3, so the interval for h^2 is the (4/5, 4/3).

 Feb 10, 2022

28 Online Users