Solve the following triangle for A,C and b the given info is :a=58 c=24 B=64°
We can use the Law of Cosines :
b^2 =a^2 + c^2 - 2(a)(c)cos(B)
b^2 = 58^2 + 24^2 - 2(58)(24) cos(64°)
b = sqrt [ 58^2 + 24^2 - 2(58)(24) cos(64°)] = about 52.15
Using the Law of Sines
sinC/ 24 = sin B / 52.15
sin C / 24 = sin(64)/ 52.15
sin C = 24*sin(64)/ 52.15
sin-1 [ 24* sin (64)/ 52.15] = C = about 24.43°
So A = [ 180 - 52.15 - 24.43] = about 103.42°
We can use the Law of Cosines :
b^2 =a^2 + c^2 - 2(a)(c)cos(B)
b^2 = 58^2 + 24^2 - 2(58)(24) cos(64°)
b = sqrt [ 58^2 + 24^2 - 2(58)(24) cos(64°)] = about 52.15
Using the Law of Sines
sinC/ 24 = sin B / 52.15
sin C / 24 = sin(64)/ 52.15
sin C = 24*sin(64)/ 52.15
sin-1 [ 24* sin (64)/ 52.15] = C = about 24.43°
So A = [ 180 - 52.15 - 24.43] = about 103.42°