A triangle with vertices A(5,3), B(1,-4) and C(-3,1) is rotated 90 degrees counterclockwise about vertex B. Find the co-ordinates of the image of vertex A.
Here's one way to do this...but maybe not the most efficient
Move "B" to the origin ....so ( 1 - 1, - 4 + 4) = (0, 0)
Apply the same transformation to "A" and we have
(5 -1, 3 + 4) = ( 4, 7)
Rotating this point 90° counter-clockwise produces (-7, 4)
Now.......reverse the original transformation and we have
(-7 + 1, 4 - 4) = (-6, 0) = A'
A triangle with vertices A(5,3), B(1,-4) and C(-3,1) is rotated 90 degrees counterclockwise about vertex B.
Find the co-ordinates of the image of vertex A.
\(\begin{array}{llcll} \text{Formula Rotation:} & \boxed{\vec{A}' = (\vec{A}-\vec{B_{rotation\ axis}})\cdot D +\vec{B_{rotation\ axis}} } \\ & \vec{A} \text{ before rotation} \\ & \vec{A}' \text{ after rotation} \\ & \text{$\vec{B_{rotation\ axis}}$ at $\binom{1}{-4} $ } \\ & \overset{\curvearrowleft}{D}_{\varphi} = \begin{pmatrix} \cos(\varphi) & \sin(\varphi) \\ -\sin(\varphi) & \cos(\varphi) \end{pmatrix} \ \text{ Matrix of rotation counterclockwise}\\ & \overset{\curvearrowleft}{D}_{90^{\circ}} =\begin{pmatrix} \cos(90^{\circ}) & \sin(90^{\circ}) \\-\sin(90^{\circ}) & -\cos(90^{\circ}) \end{pmatrix} =\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \\ \end{array} \)
\(\begin{array}{llcll} \text{Formula Rotation:} & \boxed{\vec{A}' = (\vec{A}-\vec{B_{rotation\ axis}})\cdot D +\vec{B_{rotation\ axis}} } \\ & \begin{array}{|rcll|} \hline \vec{A}' &=& \left(\dbinom{5}{3}-\dbinom{1}{-4} \right)\cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} +\dbinom{1}{-4} \\ &=& \dbinom{4}{7} \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} +\dbinom{1}{-4} \\ &=& \dbinom{-7}{4}+\dbinom{1}{-4} \\ &=& \dbinom{-6}{0} \\ \hline \end{array} \end{array} \)