+0  
 
0
168
2
avatar

A triangle with vertices A(5,3), B(1,-4) and C(-3,1) is rotated 90 degrees counterclockwise about vertex B. Find the co-ordinates of the image of vertex A.

Guest Feb 5, 2018
 #1
avatar+92503 
+1

Here's one way to do this...but maybe not the most efficient

 

Move  "B"  to the origin   ....so   ( 1 - 1, - 4 + 4)  = (0, 0)

 

Apply the same transformation to "A"  and we have   

(5 -1, 3 + 4)  =  ( 4, 7)

 

Rotating this point 90° counter-clockwise produces (-7, 4)

 

Now.......reverse the original transformation  and we have

 

(-7 + 1, 4 - 4)   =    (-6, 0)  = A'

 

 

cool cool cool

CPhill  Feb 5, 2018
 #2
avatar+20585 
0

A triangle with vertices A(5,3), B(1,-4) and C(-3,1) is rotated 90 degrees counterclockwise about vertex B.

Find the co-ordinates of the image of vertex A.

 

\(\begin{array}{llcll} \text{Formula Rotation:} & \boxed{\vec{A}' = (\vec{A}-\vec{B_{rotation\ axis}})\cdot D +\vec{B_{rotation\ axis}} } \\ & \vec{A} \text{ before rotation} \\ & \vec{A}' \text{ after rotation} \\ & \text{$\vec{B_{rotation\ axis}}$ at $\binom{1}{-4} $ } \\ & \overset{\curvearrowleft}{D}_{\varphi} = \begin{pmatrix} \cos(\varphi) & \sin(\varphi) \\ -\sin(\varphi) & \cos(\varphi) \end{pmatrix} \ \text{ Matrix of rotation counterclockwise}\\ & \overset{\curvearrowleft}{D}_{90^{\circ}} =\begin{pmatrix} \cos(90^{\circ}) & \sin(90^{\circ}) \\-\sin(90^{\circ}) & -\cos(90^{\circ}) \end{pmatrix} =\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \\ \end{array} \)

 

\(\begin{array}{llcll} \text{Formula Rotation:} & \boxed{\vec{A}' = (\vec{A}-\vec{B_{rotation\ axis}})\cdot D +\vec{B_{rotation\ axis}} } \\ & \begin{array}{|rcll|} \hline \vec{A}' &=& \left(\dbinom{5}{3}-\dbinom{1}{-4} \right)\cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} +\dbinom{1}{-4} \\ &=& \dbinom{4}{7} \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} +\dbinom{1}{-4} \\ &=& \dbinom{-7}{4}+\dbinom{1}{-4} \\ &=& \dbinom{-6}{0} \\ \hline \end{array} \end{array} \)

 

laugh

heureka  Feb 6, 2018

31 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.