+0  
 
0
43
2
avatar

A triangle with vertices A(5,3), B(1,-4) and C(-3,1) is rotated 90 degrees counterclockwise about vertex B. Find the co-ordinates of the image of vertex A.

Guest Feb 5, 2018
Sort: 

2+0 Answers

 #1
avatar+82944 
+1

Here's one way to do this...but maybe not the most efficient

 

Move  "B"  to the origin   ....so   ( 1 - 1, - 4 + 4)  = (0, 0)

 

Apply the same transformation to "A"  and we have   

(5 -1, 3 + 4)  =  ( 4, 7)

 

Rotating this point 90° counter-clockwise produces (-7, 4)

 

Now.......reverse the original transformation  and we have

 

(-7 + 1, 4 - 4)   =    (-6, 0)  = A'

 

 

cool cool cool

CPhill  Feb 5, 2018
 #2
avatar+18956 
0

A triangle with vertices A(5,3), B(1,-4) and C(-3,1) is rotated 90 degrees counterclockwise about vertex B.

Find the co-ordinates of the image of vertex A.

 

\(\begin{array}{llcll} \text{Formula Rotation:} & \boxed{\vec{A}' = (\vec{A}-\vec{B_{rotation\ axis}})\cdot D +\vec{B_{rotation\ axis}} } \\ & \vec{A} \text{ before rotation} \\ & \vec{A}' \text{ after rotation} \\ & \text{$\vec{B_{rotation\ axis}}$ at $\binom{1}{-4} $ } \\ & \overset{\curvearrowleft}{D}_{\varphi} = \begin{pmatrix} \cos(\varphi) & \sin(\varphi) \\ -\sin(\varphi) & \cos(\varphi) \end{pmatrix} \ \text{ Matrix of rotation counterclockwise}\\ & \overset{\curvearrowleft}{D}_{90^{\circ}} =\begin{pmatrix} \cos(90^{\circ}) & \sin(90^{\circ}) \\-\sin(90^{\circ}) & -\cos(90^{\circ}) \end{pmatrix} =\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \\ \end{array} \)

 

\(\begin{array}{llcll} \text{Formula Rotation:} & \boxed{\vec{A}' = (\vec{A}-\vec{B_{rotation\ axis}})\cdot D +\vec{B_{rotation\ axis}} } \\ & \begin{array}{|rcll|} \hline \vec{A}' &=& \left(\dbinom{5}{3}-\dbinom{1}{-4} \right)\cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} +\dbinom{1}{-4} \\ &=& \dbinom{4}{7} \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} +\dbinom{1}{-4} \\ &=& \dbinom{-7}{4}+\dbinom{1}{-4} \\ &=& \dbinom{-6}{0} \\ \hline \end{array} \end{array} \)

 

laugh

heureka  Feb 6, 2018

9 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details