+0  
 
+8
625
6
avatar+537 

In the following fighure ,if triangle ABC is a right triangle,angle A= 90 degrees,point D located on AC ,point E is loacted on BC, $${\mathtt{AB}} = {\frac{{\mathtt{1}}}{{\mathtt{2}}}}{\mathtt{\,\times\,}}{\mathtt{BD}}$$ ,and $${\mathtt{CE}} = {\frac{{\mathtt{1}}}{{\mathtt{4}}}}{\mathtt{\,\times\,}}{\mathtt{EB}}$$. angle BDE=120 degrees,CD=3, then BC=?

fiora  Jun 24, 2015

Best Answer 

 #1
avatar+20025 
+18

In the following fighure ,if triangle ABC is a right triangle,angle A= 90 degrees,point D located on AC ,point E is loacted on BC, $${\mathtt{AB}} = {\frac{{\mathtt{1}}}{{\mathtt{2}}}}{\mathtt{\,\times\,}}{\mathtt{BD}}$$ ,and $${\mathtt{CE}} = {\frac{{\mathtt{1}}}{{\mathtt{4}}}}{\mathtt{\,\times\,}}{\mathtt{EB}}$$. angle BDE=120 degrees,CD=3, then BC=?

 

We define:  CD = 3,  AB = y,   DB = 2y,   CE = x,   EB =  4x,   BC = 5x,   ED = u,   DA = d

1. Pythagoras:

$$\small{\overline{AB}^2 + \overline{DA}^2 = \overline{DB}^2}\\
\small{y^2+d^2=4y^2\qquad d^2 = 3y^2 \qquad d = \sqrt{3}y }$$

 

2. Pythagoras:

$$\small{\overline{CA}^2 + \overline{AB}^2 = \overline{BC}^2 \qquad \overline{CA} = 3+\sqrt{3}y}\\\\
\small{ (3+\sqrt{3}y)^2+y^2=(5x)^2\qquad \cdots \qquad
\boxed{x = \dfrac{ \sqrt{ 4y^2+6\sqrt{3}y+9 } } {5} ~~(1) }}$$

 

3. cos-rule:

$$\small{u^2 = 3^2 + x^2 - 2\cdot 3\cdot x \cdot \cos{(C)}\qquad \cos{(C)} = \dfrac{ 3 + \sqrt{3}y }{5x} \quad \cdots \quad \boxed{ u = \sqrt{x^2-1.2\sqrt{3}+5.4} ~~(2)}}$$

4. cos-rule:

$$\small{
\begin{array}{lcl}
(4x)^2 = u^2+(2y)^2-2u2y\cos{ (120\ensurement{^{\circ}}) } \quad \cos{(120\ensurement{^{\circ}}) } = -\frac{1}{2} \quad \cdots \quad 16x^2=u^2+4y^2+2uy \\
\text{we substitute u, formula (2)}\\
\cdots\\
15x^2 = -1.2\sqrt{3}y+5.4+4y^2+2y\sqrt{x^2-1.2\sqrt{3}y+5.4}\\
\text{we substitute first x, formula (1)}\\
\cdots\\
\frac{12}{5}y^2+}\frac{18}{5}\sqrt{3}y=4y^2-1.2\sqrt{3}y+2y\sqrt{x^2-1.2\sqrt{3}y+5.4} \qaud | \quad :y \\
\frac{12}{5}y+}\frac{18}{5}\sqrt{3}=4y-1.2\sqrt{3}+2\sqrt{x^2-1.2\sqrt{3}y+5.4} \\
\cdots\\
x^2-1.2\sqrt{3}y+5.4=(2.4\sqrt{3}-0.8y)^2\\
\text{we substitute again x, formula (1)}\\
\cdots\\
0.16y^2+0.24\sqrt{3}y+0.36-1.2\sqrt{3}y+5.4=17.28-3.84\sqrt{3}y+0.64y^2\\
0.48y^2-2.88\sqrt{3}y+11.52=0 \quad | :0.48 \quad \\
\boxed{y^2-6\sqrt{3}+24 = 0} \\\\
y_{1,2} = \frac{6\sqrt{3}\pm \2\sqrt{3}}{2}\\
y_1 = 4\sqrt{3} \quad \text{no solution}\\
y_2 = 2\sqrt{3} \quad \text{solution}\\\\
x = \dfrac{ \sqrt{ 4y^2+6\sqrt{3}y+9 } } {5} \\\\
x = \dfrac{ \sqrt{ 4 (2\sqrt{3})^2+6\sqrt{3}( 2\sqrt{3})+9 } } {5} \\\\
x = \dfrac{ \sqrt{ 48 +36+9 } } {5} \\\\
x = 1.92873015220\\\\
\mathbf{ \overline{BC} =5x = 9.64365076099 }
\end{array}
}$$

 

heureka  Jun 24, 2015
 #1
avatar+20025 
+18
Best Answer

In the following fighure ,if triangle ABC is a right triangle,angle A= 90 degrees,point D located on AC ,point E is loacted on BC, $${\mathtt{AB}} = {\frac{{\mathtt{1}}}{{\mathtt{2}}}}{\mathtt{\,\times\,}}{\mathtt{BD}}$$ ,and $${\mathtt{CE}} = {\frac{{\mathtt{1}}}{{\mathtt{4}}}}{\mathtt{\,\times\,}}{\mathtt{EB}}$$. angle BDE=120 degrees,CD=3, then BC=?

 

We define:  CD = 3,  AB = y,   DB = 2y,   CE = x,   EB =  4x,   BC = 5x,   ED = u,   DA = d

1. Pythagoras:

$$\small{\overline{AB}^2 + \overline{DA}^2 = \overline{DB}^2}\\
\small{y^2+d^2=4y^2\qquad d^2 = 3y^2 \qquad d = \sqrt{3}y }$$

 

2. Pythagoras:

$$\small{\overline{CA}^2 + \overline{AB}^2 = \overline{BC}^2 \qquad \overline{CA} = 3+\sqrt{3}y}\\\\
\small{ (3+\sqrt{3}y)^2+y^2=(5x)^2\qquad \cdots \qquad
\boxed{x = \dfrac{ \sqrt{ 4y^2+6\sqrt{3}y+9 } } {5} ~~(1) }}$$

 

3. cos-rule:

$$\small{u^2 = 3^2 + x^2 - 2\cdot 3\cdot x \cdot \cos{(C)}\qquad \cos{(C)} = \dfrac{ 3 + \sqrt{3}y }{5x} \quad \cdots \quad \boxed{ u = \sqrt{x^2-1.2\sqrt{3}+5.4} ~~(2)}}$$

4. cos-rule:

$$\small{
\begin{array}{lcl}
(4x)^2 = u^2+(2y)^2-2u2y\cos{ (120\ensurement{^{\circ}}) } \quad \cos{(120\ensurement{^{\circ}}) } = -\frac{1}{2} \quad \cdots \quad 16x^2=u^2+4y^2+2uy \\
\text{we substitute u, formula (2)}\\
\cdots\\
15x^2 = -1.2\sqrt{3}y+5.4+4y^2+2y\sqrt{x^2-1.2\sqrt{3}y+5.4}\\
\text{we substitute first x, formula (1)}\\
\cdots\\
\frac{12}{5}y^2+}\frac{18}{5}\sqrt{3}y=4y^2-1.2\sqrt{3}y+2y\sqrt{x^2-1.2\sqrt{3}y+5.4} \qaud | \quad :y \\
\frac{12}{5}y+}\frac{18}{5}\sqrt{3}=4y-1.2\sqrt{3}+2\sqrt{x^2-1.2\sqrt{3}y+5.4} \\
\cdots\\
x^2-1.2\sqrt{3}y+5.4=(2.4\sqrt{3}-0.8y)^2\\
\text{we substitute again x, formula (1)}\\
\cdots\\
0.16y^2+0.24\sqrt{3}y+0.36-1.2\sqrt{3}y+5.4=17.28-3.84\sqrt{3}y+0.64y^2\\
0.48y^2-2.88\sqrt{3}y+11.52=0 \quad | :0.48 \quad \\
\boxed{y^2-6\sqrt{3}+24 = 0} \\\\
y_{1,2} = \frac{6\sqrt{3}\pm \2\sqrt{3}}{2}\\
y_1 = 4\sqrt{3} \quad \text{no solution}\\
y_2 = 2\sqrt{3} \quad \text{solution}\\\\
x = \dfrac{ \sqrt{ 4y^2+6\sqrt{3}y+9 } } {5} \\\\
x = \dfrac{ \sqrt{ 4 (2\sqrt{3})^2+6\sqrt{3}( 2\sqrt{3})+9 } } {5} \\\\
x = \dfrac{ \sqrt{ 48 +36+9 } } {5} \\\\
x = 1.92873015220\\\\
\mathbf{ \overline{BC} =5x = 9.64365076099 }
\end{array}
}$$

 

heureka  Jun 24, 2015
 #2
avatar
+13

@heureka/  Your calculations are so impressive!!!

Guest Jun 24, 2015
 #3
avatar+1068 
+10

    @heureka:/           

                              

civonamzuk  Jun 24, 2015
 #4
avatar+93665 
+10

Great work Heureka

I have added this to the "Great answers to Learn from" sticky thread :)

Melody  Jun 25, 2015
 #5
avatar+537 
0

Great job,Heureka!It,s correct.

Does this question challenge you?

fiora  Jun 25, 2015
 #6
avatar+20025 
+5

Hallo fiora,

yes, this question challange me.

Thank you for this question!

 

heureka  Jun 25, 2015

13 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.