+0  
 
0
16
1
avatar+0 

In triangle $PQR$, let $M$ be the midpoint of $\overline{PQ}$, let $N$ be the midpoint of $\overline{PR}$, and let $O$ be the intersection of $\overline{QN}$ and $\overline{RM}$, as shown. If $\overline{QN}\perp\overline{PR}$, $QN = 1$, and $PR =1$, then find $OR$.

 Feb 9, 2024
 #1
avatar+129830 
+1

 

 

Let  Q = (0,0)

QN = 1      RN = (PR/2)  = 1/2  = PR

Triangle QNR is right with QNR the right angle

Then let  QR  =  sqrt [ QR^2 - RN^2 ] =   sqrt [ 1 - (1/2)^2 ] =  sqrt (3/2)

So  R = (sqrt (3) / 2,  0)

Also  QP = sqrt [ QR^2  - PR^2 ]   = sqrt [ 1 -(1/2)^2] = sqrt (3/2)

 

Now  we can find the coordinates  of   P  by the intersection of two circles

One centered at (0,0) wih a radius of sqrt (3)/ 2

And one centered at R = (sqrt (3) / 2  , 0)  with a radius of 1

The equations are

x^2 + y^2   = 3/4    →   y^2 = (3/4) - x^2

(x - sqrt (3)/2)^2  + y^2   = 1 → y^2 = 1 - (x - sqrt (3)/2)^2

 

Setting these equal  and  solving for the x coordinate  of P

(3/4) - x^2  =  1  -  (x - sqrt (3)/2 / 2)^2 

(3/4) - x^2  = 1 - x^2 + sqrt (3)x - (3/4)

1/2 =  sqrt (3) x

x =  1/ (2sqrt 3)  =  sqrt (3)  / 6

And y^2  = (3/4) -  3  / 36   =   3/4 - 1/12  = 32/48  = 2/3

y = sqrt (2/3)

 

So  P  = ( sqrt (3) / 6  ,  sqrt (2/3))

Since N is a  median of QP......then N  =  (sqrt (3) /12 ,  sqrt (2/3) / 2 )

 

O is the intersection of medians QN and RN  { O is the centroid of PQR)

 

 

By a property of centroids.... ON   is  (2/3)  the distance from  R to N

 

(2/3)  sqrt  [   (sqrt (3)/2  - sqrt (3)/12)^2  + ( sqrt (2/3) /2)^2  ]   

 

(2/3)  sqrt [ (5sqrt (3)/12)^2  +  ( sqrt (2/3)  /2 )^2 ] =

 

(2/3) sqrt [ 75/144 + 1/6 ]   = 

 

(2/3) sqrt  [75 /144 + 24/144 ]  =

 

(2/3) sqrt (99 / 144)   =

 

(2/3) (1/12) sqrt (99)   =

 

3 (2/3) (1/12) sqrt (11) =

 

sqrt (11) / 6

 

cool cool cool

 Feb 10, 2024

2 Online Users

avatar