+0  
 
0
15
1
avatar+1234 

In triangle ABC, angle ACB = 90 degrees.  Let H be the foot of the altitude from C to side AB.

 

If BC = 1 and AH = 2, find CH.

 Mar 18, 2024
 #1
avatar+129852 
+1

A

      2

         H

  

C      1         B

 

Triangle AHC  ≈ Triangle  ACB

AH / CH  = AC / BC

2 / CH  = AC 

CH  = 2 / AC

 

Triangle BHC ≈ BCA

CH / BC  = AC / BA

CH  =  AC / BA

 

2 /AC  = AC / BA

2BA = AC^2

 

2BA + BC^2  = AB^2

2BA + 1^2 = AB^2

AB^2 - 2AB - 1  =  0

AB^2 - 2AB  =  1

AB^2  -2AB + 1 = 2

(AB - 1)^2  =  2

AB - 1  = sqrt(2)

AB = 1 + sqrt (2)

 

BH  =  AB  - AH   =  1  + sqrt (2)  - 2  =  sqrt (2) - 1

 

CH^2 + BH^2 = BC^2

CH^2 + (sqrt (2) - 1)^2  = 1^2

CH^2  + (1 - 2sqrt 2 + 2)  = 1

CH^2  = 2sqrt(2)  - 2

CH = sqrt [ 2sqrt (2) - 2 ] ≈  .91

 

cool cool cool

 Mar 18, 2024

1 Online Users