In triangle JKL, we have JK = JL = 25 and KL = \(20\). Find the circumradius.
We calculate the area of the triangle.
Area of triangle JKL = \(\dfrac12 \cdot 20 \cdot \sqrt{25^2 - \left(\dfrac{20}2\right)^2} = 50\sqrt{21} \)
Then, we use the formula \(\text{circumradius} = \dfrac{\text{product of 3 sides}}{4(\text{area})} \).
\(\text{circumradius} = \dfrac{25(25)(20)}{4(50\sqrt{21})} = \dfrac{125}{42}\sqrt{21}\)
We calculate the area of the triangle.
Area of triangle JKL = \(\dfrac12 \cdot 20 \cdot \sqrt{25^2 - \left(\dfrac{20}2\right)^2} = 50\sqrt{21} \)
Then, we use the formula \(\text{circumradius} = \dfrac{\text{product of 3 sides}}{4(\text{area})} \).
\(\text{circumradius} = \dfrac{25(25)(20)}{4(50\sqrt{21})} = \dfrac{125}{42}\sqrt{21}\)