+0  
 
0
34
1
avatar

In triangle JKL, we have JK = JL = 25 and KL = \(20\). Find the circumradius.

 Apr 17, 2022

Best Answer 

 #1
avatar+9369 
+1

We calculate the area of the triangle.

 

Area of triangle JKL = \(\dfrac12 \cdot 20 \cdot \sqrt{25^2 - \left(\dfrac{20}2\right)^2} = 50\sqrt{21} \)

Then, we use the formula \(\text{circumradius} = \dfrac{\text{product of 3 sides}}{4(\text{area})} \).

\(\text{circumradius} = \dfrac{25(25)(20)}{4(50\sqrt{21})} = \dfrac{125}{42}\sqrt{21}\)

 

Wolfram Alpha Output

My answer to a similar problem

 Apr 17, 2022
 #1
avatar+9369 
+1
Best Answer

We calculate the area of the triangle.

 

Area of triangle JKL = \(\dfrac12 \cdot 20 \cdot \sqrt{25^2 - \left(\dfrac{20}2\right)^2} = 50\sqrt{21} \)

Then, we use the formula \(\text{circumradius} = \dfrac{\text{product of 3 sides}}{4(\text{area})} \).

\(\text{circumradius} = \dfrac{25(25)(20)}{4(50\sqrt{21})} = \dfrac{125}{42}\sqrt{21}\)

 

Wolfram Alpha Output

My answer to a similar problem

MaxWong Apr 17, 2022

7 Online Users